ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И.Г. ПЕТРОВСКОГО»

На правах рукописи

Пилипенко Кирилл Сергеевич

Термодинамические свойства клатратов и клатратоподобных соединений в температурной области 2 – 300 К

Специальность 1.3.8. Физика конденсированного состояния

ДИССЕРТАЦИЯ

на соискание учёной степени кандидата физико-математических наук

R

Научный руководитель: кандидат физико-математических наук Митрошенков Николай Васильевич Научный консультант: доктор физико-математических наук, профессор Новиков Владимир Васильевич

Брянск — 2023

Оглавление

				Стр.
BB]	ЕДЕ	НИЕ		. 4
IJ	ABA	1. CTP	УКТУРНЫЕ, ТЕРМОДИНАМИЧЕСКИЕ	
		ИΦ	ИЗИЧЕСКИЕ СВОИСТВА КЛАТРАТОВ	. 10
	1.1	Особе	нности кристаллической структуры клатратов	. 10
		1.1.1	Клатраты І-типа	. 12
		1.1.2	Клатраты II-го типа	. 14
		1.1.3	Клатраты VII-го типа и «скрученные» клатраты	. 15
		1.1.4	Клатратоподобные соединения	. 17
	1.2	Темпе	ратурные зависимости теплоёмкости клатратов	. 19
	1.3	Динам	ика кристаллической решётки клатратов и клатратоподобных	
		соеди	нений	. 24
	1.4	Элект	рические, электронные, термо-электрические и магнитные	
		свойст	гва клатратов	. 25
	Выв	оды по	Главе 1	. 31
ГЛА	ABA	2. TEO	РИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНЫХ	
		3AB	ИСИМОСТЕЙ ТЕПЛОЁМКОСТИ ПРИ НИЗКИХ	
		TEM	ПЕРАТУРАХ	. 33
	2.1	Теори	и теплоёмкости	. 33
	2.2	Аппар	атура для экспериментального исследования теплоёмкости	
		твёрди	ых тел при 2 – 300К	. 39
	2.3	Метод	цика получения образцов клатратов	. 42
	Выв	оды по	Главе 2	. 46
ГЛА	ABA	3. OCC	ЭБЕННОСТИ ТЕМПЕРАТУРНЫХ ЗАВИСИМОСТЕЙ	
		ТЕП	ЛОЁМКОСТИ КЛАТРАТОВ И КЛАТРАТОПОДОБНЫХ	
		COE	СДИНЕНИЙ ПРИ 2 – 300 К	. 47
	3.1	Клатр	at $Sn_{24}P_{19,4}Br_8$. 47
	3.2	Клатр	аты $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$. 54
	3.3	Клатр	at $Sn_{18}In_6As_{21,5}I_8$. 62
	3.4	Клатр	аты $SrNi_2P_4$ и $BaNi_2P_4$. 67
	3.5	Клатр	at $EuNi_2P_4$. 75
	3.6	Клатр	атоподобное соединение Eu7Cu44As23	. 82
	3.7	Харак	теристические термодинамические функции клатратов	
		и клат	ратоподобных соединений	. 88

	и клатратополобны	ix c	оел	ине	ни	й	•	_						_	_		117
ПРИЛОЖЕНИЕ .	П.1. Молярная тепл	тоë	мк()сті	ь К	ла	гр	ат	0B								
СПИСОК ЛИТЕРА	ТУРЫ									•			•	•		•	108
ОБЩИЕ ВЫВОДЫ	І И ЗАКЛЮЧЕНИЕ							•	• •	•	•	•	•	•		•	106
Выводы по Главе	23							•		•	•		•			•	104

Введение

Актуальность темы. В настоящее время очень остро стоит вопрос поиска возобновляемых источников энергии. Так называемые неорганические клатраты и клатратоподобные соединений являются весьма многообещающими материалами для решения этих насущных проблем. Интерес к ним обусловлен большим разнообразием их свойств и всё более широкими возможностями практического применения. Одним из перспективных направлений исследований клатратов является разработка разного рода термоэлектрических преобразователей, принцип работы которых основан на эффекте Зеебека, а также на эффекте Пельтье. Основной проблемой при разработке термоэлектрических приборов является повышение их эффективности, и главную роль здесь играет создание термоэлектрического материала с высокой добротностью. Такой материал должен обладать высокой электропроводностью и плохо проводить тепло [1].

Термин «клатрат» происходит от латинского clathratus и означает «обрешечённый, закрытый решёткой». Иногда клатраты называют соединениями включения. Этот термин, введённый Пауэллом в 1948 году, относится к гидратам и аналогичным веществам, трёхмерная структура которых имеет матрицу-хозяина, обеспечивающую высокие значения электропроводности, а также атомов-гостей, которые удерживаются силами Ван-дер-Ваальса или слабым электростатическим взаимодействием в полостях хозяина [2, 3]. Именно квазисвободные колебания гостей считаются ответственными за низкие величины теплопроводности клатратов [4]. Известно несколько типов структур клатрата, однако, несмотря на их многообразие, общей особенностью клатратов является неспособность структуры хозяина сохранять стабильность в отсутствие атомов-гостей. Несмотря на то, что уже в 1969 году были получены неорганические оловосодержащие клатраты [5], длительный период времени только газовые гидраты считались клатратами. Ситуация радикально изменилась в 1960 – 1980-х годах с открытием сплавов на основе кремния и германия. В настоящее время семейство клатратов и клатратоподобных соединений представляет собой весьма обширную группу веществ с ковалентными связями [3].

Некоторые клатраты и клатратоподобные соединения могут быть использованы в приборах для конверсии отработанного тепла, для преобразования солнечной энергии, в криогенном охлаждении [6—8], в фотогальванике [9, 10], в оптоэлектронике [11] в качестве сверхпроводников [12], а также в литий-ионных аккумуляторах [13]. Исследования тепловых свойств клатратоподобных соединений представлены в периодической литературе фрагментарно. В некоторых работах изучены электрические свойства клатратов [14], тепловое расширение [15] и теплопроводность [16] при низких температурах. Также были представлены экспериментальные значения теплоёмкости для некоторых клатратов, но без подробного анализа полученных зависимостей [15, 17]. Изучены термодинамические свойства некоторых клатратов при высоких температурах [4, 18, 19].

Изучение термодинамических свойств клатратов и клатратоподобных соединений при низких температурах является **актуальным**, так как именно в этом диапазоне температур возможно определение их физических параметров, таких как коэффициент Зоммерфельда, характеристические температуры Дебая и Эйнштейна, необходимых для анализа и прогнозирования свойств клатратов в широком температурном интервале, в том числе и при повышенных температурах.

Йодосодержащие клатраты можно рассматривать как твёрдые растворы, образованные частичным замещением Sn на Zn в $Sn_{24}P_{19,2}I_8$ с сохранением электронейтральности согласно концепции Цинтля-Клемма [20].

Клатраты I-го типа содержащие *In* имеют общую формулу $Sn_{24-x-\delta}In_xAs_{22-y}I_8$. Детальное рассмотрение их кристаллической структуры показывает, что при низком содержании индия образуется «сверхструктура». Примером может являться клатрат $Sn_{20.5}As_{22}I_8$, который был описан в работе [21]. Также клатраты системы Sn–In–As–I обладают проводимостью n-типа с высоким абсолютным значением коэффициента Зеебека от 322 до 594 мкВ· K^{-1} при комнатной температуре [22].

Неорганические клатраты VII-го типа могут существовать в двух структурных формах. Одна из таких форм — так называемая «правильный» клатрат, например, $BaNi_2P_4$, тогда как $SrNi_2P_4$, $BaCu_2P_4$ и $EuNi_2P_4$ представляют собой своеобразные искаженные клатраты VII-го типа. В кристаллической структуре обоих типов есть только один тип 24-вершинных многогранников, только в $BaNi_2P_4$ он имеет вид усечённого кубооктаэдра, а в остальных трёх клатратах имеет вид искаженного, закрученного многогранника, называемого *полиэдром Кельвина*. Анализ транспортных свойств подтверждает наличие металлических свойств клатратов VII-го типа. В то же время, они обладают высокими электрическими характеристиками: удельное сопротивление при комнатной температуре и коэффициент Зеебека, достигающий 30 млВ·K⁻¹, что нетипично для обычных металлов. Кроме того, их теплопроводность достаточно низкая, от 2 до 4 Вт·м⁻¹·K⁻¹ [23].

Характерные детали структуры редкого клатрата VII-го типа $EuNi_2P_4$ подразумевает уникальность его фононной подсистемы. Было обнаружено, что атом европия имеет наибольший параметр атомного смещения с ярко выраженной анизотропией (атомная компонента смещения U_{33} примерно в два раза больше, чем компоненты U_{11} и U_{22}). Это связано с тем, что полость, в которой находится атом европия, имеет удлиненную форму вдоль направления «*c*» элементарной ячейки. Наличие в качестве гостя редкоземельного иона Eu^{2+} и парамагнитного иона Ni^{2+} в матрице-хозяине позволяет ожидать проявления аномальных магнитных свойств $EuNi_2P_4$ при низких температурах [24, 25]. Ранее был сделан вывод, что основным состоянием системы магнитных моментов ионов Eu^{2+} является антиферромагнитное ниже $T_N = 15$ K [26].

Клатратоподобное соединение $Eu_7Cu_{44}As_{23}$ показывает интересную комбинацию термодинамических и транспортных свойств. Наличие иона Eu^{2+} приводит к переходу в ферромагнитное упорядоченное состояние при температуре ниже температуры Кюри ($T_C = 17,3$ K) [27].

В совокупности эти свойства делают клатраты и клатратоподобные соединения интересными объектами для изучения их термоэлектрического потенциала и оптимизации термоэлектрической добротности за счёт легирования.

Степень разработанности темы. Использование совместного анализа калориметрических данных теплоёмкости и теплового расширения по методу Дебая-Эйнштейна хорошо себя показывает при исследовании множества поликристаллических образцов.

Термодинамические свойства клатрата $Sn_{24}P_{19.3}I_8$ уже были исследованы ранее. Однако имеются доказательства того, что фононный спектр клатратов является более сложным, чем предполагалось. В частности, не был учтён вклад неупорядоченности в катионном каркасе в общую теплоёмкость, который проявляется при самых низких температурах.

Также были исследованы термодинамические свойства клатрата $EuNi_2P_4$. Была получена температурная зависимость теплоёмкости этого клатрата, на которой отслеживались три аномалии, свидетельствующее о фазовых превращениях, одна из которых характеризует переход в магнитоупорядоченное состояние. Однако полученная зависимость требует более детального рассмотрения.

Целью настоящей работы является экспериментальное выявление закономерностей температурных изменений теплоёмкости клатратов различных типов, а также клатратоподобных соединений при низких температурах, установление природы особенностей исследуемых температурных зависимостей. Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Экспериментально определить величины теплоёмкости поликристаллических образцов клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ при температурах 2 – 300 К; выявить аномалий температурных зависимостей;
- Выделить и проанализировать фононный, электронный и магнитный вклады, а также вклад двухуровневых систем в теплоёмкость изучаемых клатратов и клатратоподобного соединения; сопоставить характеристики фононного спектра и динамики решётки исследуемых клатратов;
- Проанализировать экспериментальные зависимости тепловых свойств клатратов в приближении Дебая-Эйнштейна, установить закономерности изменений параметров модели в зависимости от структуры и состава клатратов;
- 4. Проанализировать влияние состава и кристаллической структуры клатратов на их термодинамические свойства.

Научная новизна:

- 1. Впервые экспериментально и теоретически исследованы температурные зависимости теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в области 2-300 K;
- Выявлены и проанализированы особенности изменения термодинамических характеристик клатратов и клатратоподобных соединений в широкой низкотемпературной области, включающей интервалы фазовых превращений;
- Впервые установлено наличие аномалий температурных зависимостей теплоёмкости изучаемых клатратов, а также клатратоподобного соединения, установлена природа этих аномалий (магнитные, структурные превращения, неупорядоченность кристаллической структуры, двухуровневые системы, ангармонизм).

Теоретическая и практическая значимость работы заключается в следующем:

- Полученные в настоящей работе термодинамические характеристики клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ при температурах 2 – 300 К могут быть использованы в различных физико-химических расчётах, войдут в справочную литературу;
- Получивший в ходе исследования дальнейшее развитие подход для анализа калориметрических данных, основанный на модели Дебая-Эйнштейна с учётом ангармонизма и влияния сферически несимметричного окружения гостевых атомов, позволяющий адекватно определять характеристики фононных подсистем веществ, найдёт применение при проведении исследований термодинамических свойств веществ различных классов при низких температурах;
- Температурные зависимости теплоёмкости клатратов, изученные в настоящей работе, будут использованы при разработке приборов на основе клатратов и клатратоподобных соединений.

Методология и методы исследования. При выполнении диссертационной работы выполнены измерения теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ в интервале температур 2 – 300 К. Метод измерения — абсолютный адиабатический с периодическим нагревом. Анализ полученных температурных зависимостей выполнен с привлечением модели Дебая-Эйнштейна, теории двухуровневых систем, с учётом влияния неупорядоченности структуры клатратов и ангармонизма колебаний решётки.

Основные положения, выносимые на защиту:

- 1. Экспериментальные температурные зависимости теплоёмкости $C_P(T)$ клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ области температур 2 – 300 К;
- Результаты анализа температурных зависимостей теплоёмкости изучаемых веществ в модели Дебая-Эйнштейна, величины характеристических температур Дебая, Эйнштейна, выявленные закономерности изменений параметров модели с изменением состава подсистемы атомов-гостей, а также матрицы-хозяина клатратов;

3. Выявленные аномалии зависимости $C_P(T)$ клатратов, установленная природа этих аномалий (колебания двухуровневых систем, ангармонизм, неупорядоченность кристаллической структуры).

Достоверность полученных результатов обеспечивается высоким качеством образцов, применением современных методов исследования и анализа, соответствием ряда полученных физических характеристик настоящей работы данным исследований зарубежных и отечественных авторов.

Апробация работы. Основные результаты работы докладывались на следующих конференциях:

- 1. VIII Международная научная конференция «Актуальные проблемы физики твёрдого тела -2018» (Беларусь, г. Минск, 2018 г.);
- 2. «3-rd International Conference on Applied Physics» (London, UK, 2018);
- XVII Межгосударственная конференция «Термоэлектрики и их применения» (ISCTA 2021) Санкт-Петербург, Россия;
- 4. Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2022» (Россия, г. Москва, 2022 г.)

Личный вклад. Соискатель принимал непосредственное участие в проведении эксперимента по измерению теплоёмкости изучаемых клатратов, в проведении анализа калориметрических данных. Лично соискателем выполнены расчёты термодинамических характеристик клатратов, проанализированы выявленные закономерности, сформулированы основные результаты и выводы работы, представлены результаты работы на научных конференциях.

Публикации. Основные результаты по теме диссертации изложены в 10 научных изданиях, 6 из которых изданы в периодических научных журналах, индексируемых Web of Science и Scopus 4 — в тезисах докладов. Основные результаты диссертационного исследования получены в ходе выполнения работ по грантам Российского научного фонда №16-12-00004, №16-12-00004П (проект "Разработка новых термоэлектрических материалов на основе клатратов и клатратоподобных веществ").

Объем и структура работы. Диссертация состоит из введения, 3 глав, заключения и 1 приложения. Полный объём диссертации составляет 123 страницы, включая 51 рисунок и 37 таблиц. Список литературы содержит 101 наименование. Глава 1. Структурные, термодинамические и физические свойства клатратов

1.1 Особенности кристаллической структуры клатратов

Атомы 14 группы периодической таблицы, такие как Si, Ge и Sn, могут образовывать значительное число тетраэдрических ковалентных связей. Это приводит к формированию ячеистой структуры неорганических клатратов. Чаще всего ячейки имеют форму правильного многогранника. Наименьшим и наиболее часто встречающимся многогранником в клатратах является подчиняющийся правилу Эйлера правильный додекаэдр, составленный из 12-ти пятиугольных граней 5^{12} . Последующее увеличение размера многогранника обеспечивается добавлением 2 ($5^{12}6^2$), 3 ($5^{12}6^3$), 4 ($5^{12}6^4$) или 8 ($5^{12}6^8$) шестиугольных граней. Вершины шестиугольных граней, как правило, занимают атомы *B* или *P*, также там могут быть пустоты. Все виды многогранников показаны на Рисунке 1.1. Эффективный размер многогранника зависит от количества вершин и от природы элемента, который формирует структуру. Чем больше многогранник, тем больший гостевой атом требуется для достижения устойчивой структуры.

Бо́льшая часть клатратных структур представляет собой комбинацию двух или трёх видов многогранников. Они заполняют пространство и образуют крупную и высокосимметричную элементарную ячейку, способную вмещать, к примеру, 46, 136, 172 или даже больше атомов в решётке-хозяине [2, 28].

Основным ориентиром для понимания стехиометрии полупроводниковых клатратов является *концепция Цинтля*. Согласно этой концепции четыре электрона должны быть доступны для каждого тетраэдрически связанного атома-хозяина [29]. Предполагается, что гостевой атом является ионным и передаёт свои валентные электроны структуре-хозяину (в случае обратных клатратов электроны принимают гостевые атомы). То есть, если рассматривать клатрат I-го типа, то для 46 атомов структуры каркаса должны существовать 184 электрона необходимых для формирования тетраэдрических связей между всеми атомами структуры хозяина. Общее уравнение для стехиометрии тройных клатратов I-го типа с общей формулой G₈A_xB_{46-x} может быть выражено как:

$$184e^{-} = 8G^{g+} + xA^{a+} + (46 - x)B^{b+},$$

где G^{g^+} , A^{a^+} и B^{b^+} - число валентных электронов атомов-гостей (G) и двух типов атомов структуры-хозяина (A и B), соответственно [30].

Клатраты Цинтля кристаллизуются в семь структурных типов. Клатрат I-го типа является наиболее распространённым. Исторически это первый обнаруженный тип клатратных структур. Три других типа (II, III и IV) принадлежат и к гидратам, и к клатратам Цинтля, хотя для них количество известных соединений значительно ниже (Таблица 1). Структуры V и VI типов не принадлежат к фазе Цинтля, они обнаружены только у газовых и жидких гидратов. Существуют ещё два структурных типа: VIII и IX, которые не имеют аналогов среди гидратов [2]. Первое упоминание о соединении, которое впоследствии отнесли к VII-му типу, было ещё в 1994 году [31]. VIII тип похож на I-ый, но их структура и симметрия отличаются. Этот тип единственный среди всех других составлен только из одного вида многогранников — искажённых пятиугольных додекаэдров [32]. Единственным примером клатрата IV типа является $Li_{14,7}Mg_{36,8}Cu_{21,5}Ga_{66}$ [33].

Тип кла-	Простран-	Общая	Соотношение	Количество		
трата	ственная	формула	полиэдров	соединений		
	группа					
Ι	Pm3n	$G_8[E_{46}]$	$5^{12}:5^{12}6^2 \\ 2:6$	150		
II	$Fd\bar{3}m$	$G_{24}[E_{136}]$	$5^{12}:5^{12}6^4\\16:8$	25		
III	$P4_2/mmm$	$G_{30}[E_{172}]$	$5^{12}:5^{12}6^2:5^{12}6^3\\10:16:4$	2		
IV	P6/mnm	$G_{14}[E_{80}]$	$5^{12}:5^{12}6^2:5^{12}6^3$ 6:4:4	1		
VII	Im3 ¯ m	$G[E_6]$	$4^{6}6^{8}$	2 [34]		
VIII	I43m	$G_8[E_{46}]$	Искажённые 5 ¹²	4		
IX	P 4 ₁ 32	$G_{6}[E_{25}]$	5^{12}	20		

Типы неорганических клатратов [2]

В зависимости от заряда каркаса, все клатраты классифицируются на анионные, катионные и нейтральные. В классическом анионном клатрате, каркас формально носит отрицательный заряд, а атомы гостя — положительный, они представлены катионами щелочных или щелочноземельных металлов [35]. Обратная ситуация наблюдается в катионных клатратах, где каркас имеет положительный заряд, а атомы гостя отрицательно заряженные анионы галогена или теллура [36]. Уникальный пример нейтрального клатрата — своеобразный клатрат II-го типа $\Box_{24}Ge_{136}$, где \Box — вакансия [37].

1.1.1 Клатраты І-типа

Клатраты І-го типа принадлежат к кубической пространственной группе $Pm\bar{3}n$. Кристаллическая структура состоит из двух типов многогранников: малых пятиугольных додекаэдров [5^{12}] и больших 14-гранных тетрадекаэдров, которые представляют собой шестиугольные усеченные трапецоэдры [$5^{12}6^2$] (Рисунок 1.2), которые имеют по 20 и 24 вершины, соответственно. Тетрадекаэдры соединены друг с другом общими шестиугольными гранями и образуют трёхмерную систему взаимно перпендикулярных и непересекающихся столбцов, устремлённых во всех трёх направлениях, [100], [010] и [001]. Изолированные друг от друга меньшие додекаэдры

располагаются между этими столбцами. В элементарной ячейке находятся 46 атомов каркаса, которые распределены по трём кристаллографическим позициям: 6c, 16i и 24k. Атомы в двух последних позициях образуют оба типа многогранников, в то время как позиция 6c принадлежит только атомам тетрадекаэдра $[5^{12}6^2]$. Атом в положении 6c тетраэдрически связан с четырьмя атомами в позициях 24k. Два атома в положении 16i связаны между собой, а каждый из них с тремя атомами в положении 24k. Атом в позиции 24k окружён одним атомом 6c, двумя атомами 16i и одним атомом 24k. Всего на каркас приходится 2 додекаэдра и 6 тетрадекаэдров. Общая формула идеального клатрата выглядит так $G_2^I G_6^{II} [E_{46}]$, где G_2 , G_6 — атом гостя в малых и крупных многогранниках, соответственно [2, 30]. Параметры решётки некоторых клатратов представлены в Таблице 2. Тройной клатрат I-го

Рисунок 1.2. Кристаллическая структура клатрата $Sn_{10}In_{14}P_{22}I_8$

типа можно выразить общей формулой $R_8M_{16}Z_{30}$, где R относится ко 2-ой группе элементов, М — к 13-ой и Z к 14-ой. Теллур и йод уникальны тем, что каждый из них может быть одновременно и гостем, и частью клатратной структуры [38].

В клатратах, содержащих вакансии в каркасе, таких как например, $Rb_8Sn_{44}\square_2$ [39], дефекты способны упорядочиваться в кристаллической структуре и образовывать «сверхструктуру», принадлежащую к пространственной группе $Ia\bar{3}d$. При повышении температуры дефекты перераспределяются, что сопровождается структурным фазовым переходом обратно в примитивную кубическую группу *Рт*3*п*. Например, для клатрата Cs₈Sn₄₄□₂ температура фазового перехода составляет 363 К [40].

Таблица 2.

Параметры кристаллических решёток некоторых неорганических клатратов І-го типа при температурах, близких к комнатным

Соединение	Параметр решётки (a), Å	Источник
$Sn_{24}P_{19,3}I_8$	10,9540(9)	[41]
$Sn_{24}P_{19,6(1)}Br_8$	10,8142(7)	[42]
$Sn_{17,1(3)}In_{5,0(1)}\square_{1,9}As_{21,76(6)}\square_{0,24}I_8$	11,1970(10)	[22]
$Sn_{17,5(3)}In_{4,1(1)}As_{22}I_8$	11,168(1)	[43]

1.1.2 Клатраты ІІ-го типа

В структуре клатрата-II [44] также присутствуют два типа полиэдров: пентагональные додекаэдры [5¹²] и бо́льшие по размеру 16-гранные гексакайдекаэдры [5¹²6⁴]. В отличие от клатрата-I, где пентагональные додекаэдры не связаны друг с другом, в структуре клатрата-II (Рисунок 1.3) они соединены общими гранями и уложены в слои, чередующиеся в последовательности, типичной для кубической плотнейшей упаковки.

Слои пентагональных додекаэдров объединены в трёхмерный каркас через гексакайдекаэдры, которые также связаны между собой общими гексагональными гранями и располагаются в кубической структуре по алмазоподобному типу. В элементарной ячейке присутствуют 136 атомов каркаса, на которые приходятся 16 малых и 8 больших пустот. Формула соответствующего идеального клатрата II-го типа имеет вид $G_{16}^{I}G_8^{II}[E_{136}]$. Всего около 10 соединений кристаллизуется в данный структурный тип клатрата. Это можно объяснить большим различием размеров полиэдров, образующих клатрат. Структурный тип клатрата-II образуется если одновременно присутствуют два значительно отличающихся по размеру катиона (например, Na и Cs в Na₁₆Cs₈[Ce₁₃₆]), либо если атомы гостя одного типа заполняют преимущественно только один тип полиэдрических пустот, а второй тип пустот остаётся вакантным. Тип заполняемых пустот зависит от размера каркасообразующего элемента: в случае олова бо́льшие катионы бария заполняют только меньшие катионы натрия заполняют главным образом большие пустоты (Na_x□_{24-x}[Si₁₃₆],

Рисунок 1.3. Кристаллическая структура клатрата II-го типа

x<8). Все соединения со структурой клатрата-II кристаллизуются в кубической сингонии в центросимметричной пространственной группе Fd3m. 136 атомов каркаса занимают три позиции — 8a, 32e и 96g, a 24 атома гостя занимают позиции 8b и 16c в центрах соответственно гексакайдекаэдра и пентагонального додекаэдра. Все позиции каркаса в структурах клатрата-II (за исключением единственного соединения) заняты атомами одного элемента. Только в структуре Ba₁₆□₈[Ga₃₂Sn₁₀₄] атомы галлия и олова статистически распределены по всем позициям каркаса. Для клатратов-II характерно полное заполнение позиций каркаса, а вакансии, если они и есть, локализованы только в позициях гостя [44].

1.1.3 Клатраты VII-го типа и «скрученные» клатраты

Клатратообразующим многогранником в этой структуре является усечённый октаэдр [$4^{6}6^{8}$]. Идеальный клатрат VII типа должен кристаллизоваться в кубическую пространственную группу $Im\bar{3}m$. Но в таком соединении, как $BaNi_2P_4$, фосфор

и атомы переходных металлов формируют в усечённых октаэдрах квадратные грани не одинаково, что приводит к уменьшению симметрии от кубической до тетрагональной, т. е. I4/mmm. При температурах ниже 370 К, данное соединение искажается до ромбической симметрии (Immm) (Рисунок 1.4, а)). Также к данному типу относят соединение $BaPd_2P_4$ [34, 45].

Рисунок 1.4. Кристаллическая структура клатрата VII-го типа $BaNi_2P_4$ (a) и «скрученного» клатрата $SrNi_2P_4$ (б)

Так называемый «скрученный» клатрат представлен тремя соединениями $SrNi_2P_4$, $BaCu_2P_4$ и $EuNi_2P_4$ и они не имеют аналогов среди газовых гидратов. Кристаллическую структуру «скрученного» клатрата можно описать как объёмную мозаику из уникальных 24-вершинных многогранников, которые носят называние скрученных *полиэдров Кельвина* (Рисунок 1.4, б)). Многогранники M_8P_{16} состоят из 4 квадратов, 4 пятиугольников и 6 шестиугольников — $[4^45^46^6]$ [34].

Параметры решётки клатратов VII-го типа и скрученных клатратов представлены в Таблице 3.

Соалинаниа	Прост-ная	Истонник				
Сосдинение	группа	a, Å	b, Å	c, Å	ИСТОЧНИК	
$SrNi_2P_4$	Fddd	5,1928(2)	9,5598(4)	18,9575(8)	[23]	
$EuNi_2P_4$	Fddd	5,1852(1)	9,4834(1)	18,9893(2)	[26]	
α -BaNi ₂ P ₄	I4/mmm	6,553(3)		5,769(1)	[31]	
β -BaNi ₂ P ₄	Immm	6,620(1)	6,470(1)	5,785(1)	[31]	
$BaPd_2P_4$	I4/mmm	6,831(1)		5,936(1)	[45]	
$BaCu_2P_4$	Fddd	5,435(0)	18,973(1)	10,244(1)	[46]	

Параметры кристаллических решёток клатратов VII-типа и «скрученных» клатратов

Таблица 3.

1.1.4 Клатратоподобные соединения

Термин «клатратоподобный» не имеет чёткого определения. В работе [34] предлагается использовать следующие критерии «клатратоподобности»: 1) первые координационные сферы вокруг центральных атомов образуются посредством крупных многогранных структур, предпочтительно с 20-ю или более вершинами; 2) расстояния между центрами каркасов намного больше, чем расстояния от центров до атомов каркаса, а также это расстояние много больше, чем между атомами каркаса. Например, типичными клатратоподобными соединениями являются соединения типа RB₅₀, где R — редкоземельный металл [47]. Кристаллическая структура боридов RB₅₀ является орторомбической, с пространственной группой Plam. Ионы редкоземельного металла занимают полости, образованные икосаэдрами RB₁₂.

Два условия, перечисленные выше, позволяют отбросить большое количество интерметаллидов с небольшими координационными числами, а также те вещества, структура которых состоит из каналов или слоёв гостевых атомов. Например, ThCr₂Si₂, на первый взгляд удовлетворяет указанным критериям, но дальнейшее изучение структуры показывает, что он на самом деле состоит из слоёв кремниевых кубов с атомами Th внутри, которые, в свою очередь, зажаты «хромовыми» слоями. Расстояния между атомами Th эквивалентны расстоянию Th-Si, а расстояние Th-Cr много больше расстояния Th-Si. Если многогранники изображаются без учёта отдалённых вершин Cr, то каркасы остаются неполными [48]. Следовательно, эта структура не удовлетворяет ни одному из критериев.

На Рисунке 1.5 представлены особенности кристаллической структуры клатратоподобного соединения $Eu_7Cu_{44}As_{23}$. Атомы европия занимают две различные позиции, одна из которых принадлежит к гостевому типу, где атом расположен внутри 20-тивершинного многогранника. Расстояние между атомом Eu и окружа-

Рисунок 1.5. Кристаллическая структура клатратоподобного соединения *Еи*₇*Си*₄₄*Аs*₂₃

ющими его атомами меди и мышьяка варьируется от 3,18 до 3,47 Å. Атомы меди и мышьяка образуют относительно короткие межатомные связи (от 2,45 до 2,53 Å), что позволяет рассматривать этот многогранник в качестве основного каркаса. Вторая позиция Eu характеризуется кубическим окружением из 8 атомов мышьяка, которую нельзя рассматривать в качестве гостевой [27]. Оставшиеся атомы мышьяка окружены 12-тью атомами меди, которые образуют кубооктаэдр, что позволяет рассматривать этот атом как ещё одного гостя.

Итак, интерпретировать соединение как клатрат можно различными способами. Множество соединений могут обладать похожей структурой, но не многие из них демонстрируют уникальные для обычных клатратов свойства. Сложные структуры клатратов не ограничивается одним типом полиэдров. Кроме того, клатратоподобные соединения образуются не только элементами 14 группы, но и охватывают бо́льшую часть Периодической таблицы.

1.2 Температурные зависимости теплоёмкости клатратов

В работе [27] были представлены температурные зависимости молярной теплоёмкости клатратоподобного соединения $\rm Eu_7Cu_{44}As_{23}$ при наличии и отсутствии магнитного поля в области температур от 0 до 25К (Рисунок 1.6). Авторами было

Рисунок 1.6. Температурная зависимость теплоёмкости соединения Eu₇Cu₄₄As₂₃ [27]. На вставке — результат аппроксимации зависимости в диапазоне низких температур

выделено наличие фазового перехода второго рода при 17,3 К, а также проведена аппроксимация этой зависимости на основе уравнения $C_p = \gamma T + AT^{3/2} + BT^{5/2}$ в температурном интервале от 1,8 до 4 К.

В работе [49] были изучены тепловые свойства клатратов $Ba_8Ga_{16}Si_xGe_{30-x}$ и $Sr_8Ga_{16}Si_xGe_{30-x}$, где x = 0, 5, 15. Температурные зависимости теплоёмкости данных клатратов в температурной области 0 – 600 К представлены на Рисунке 1.7. Для объяснения полученных зависимостей изохорной теплоёмкости, энтропии и свободной энергии авторы использовали квантово-механические расчёты. Согласно теории, описанной в данной работе, свободная энергия Гельмгольца имеет вид:

$$F(V,T) = E(V) + F_{vib}(T) = E(V) + k_B T \sum_{q} \sum_{j} \ln\left(2\sinh\left(\frac{\hbar w_j(q)}{2k_B T}\right)\right), \quad (1.1)$$

Рисунок 1.7. Температурная зависимость теплоёмкости клатратов $Ba_8Ga_{16}Si_xGe_{30-x}$ (а) и $Sr_8Ga_{16}Si_xGe_{30-x}$ (б) [49]

где E — вклад постоянной составляющей во внутреннюю энергию, F_{vib} — колебательный вклад в свободную энергию, $w_j(q)$ — частота j-ой фононной моды в волновом векторе (q) зоны Бриллюэна, k_B — постоянная Больцмана и \hbar — постоянная Планка. Изохорная теплоёмкость будет определятся по следующей формуле:

$$C_V = -T\left(\frac{\partial^2 F_{vib}}{\partial T^2}\right). \tag{1.2}$$

Температурные зависимости теплоёмкости обоих клатратов плавно повышаются в температурном диапазоне от 0 до 300 К и стремятся к значению Дюлонга-Пти. Также было показано, что теплоёмкость клатратов при определённых температурах слабо зависит от количества атомов замещения. Например теплоёмкость $Ba_8Ga_{16}Si_xGe_{30-x}$, где x = 0, 5, 15 при 300 К для указанных выше величин равны 1436,1390, 1442 Дж/моль К соответственно.

В работе [50] исследованы тепловые свойства клатратов І-го и VIII-го типов соединения Eu₈Ga₁₆Ge₃₀. Получены температурные зависимости теплоёмкости этих соединений (Рисунок 1.8). Предпринята попытка выделение магнитного вклада

Рисунок 1.8. Температурная зависимость теплоёмкости клатратов Eu₈Ga₁₆Ge₃₀ в двух различных модификациях и Ba₈Ga₁₆Ge₃₀ [50]

в теплоёмкость посредством вычитания из полной теплоёмкости Eu₈Ga₁₆Ge₃₀ полной теплоёмкости диамагнитного аналога — Ba₈Ga₁₆Ge₃₀, которая была авторами ранее описана в приближении модели Дебая-Эйнштейна. Были получены

температуры Дебая и Эйнштейна для соединения $Eu_8Ga_{16}Ge_{30}$: $\theta_E = 45$ К и $\theta_D = 214$ К для α -фазы и $\theta_{E_1} = 75$ К, $\theta_{E_2} = 45$ К, $\theta_D = 245$ К для β -фазы.

Авторы работы [51] приводят графики температурных зависимостей теплоёмкости в области температур от 30 до 310 К для следующих клатратов І-го типа: $Sr_8Zn_8Ge_{38}$, $Sr_8Ga_{16}Ge_{30}$ и $Ba_8Ga_{16}Si_{30}$ без подробного анализа полученных зависимостей (Рисунок 1.9).

Рисунок 1.9. Температурные зависимости теплоёмкости клатратов $Sr_8Zn_8Ge_{38}$, $Sr_8Ga_{16}Ge_{30}$ и $Ba_8Ga_{16}Si_{30}$ [51]

Большой объем работ посвящён изучению тепловых свойств силикатных клатратов І-го типа (Рисунок 1.10) [52—54]. Авторы работы [54] провели подробный анализ полученных зависимостей, а также провели аппроксимацию температурных зависимостей теплоёмкости на основе квазигармонической модели Дебая.

В работе [55] представлена температурная зависимость теплоёмкости $Ba_8Cu_{16}P_{30}$ (Рисунок 1.11). Для анализа данной зависимости авторы рассматривают её как сумму фононного и электронного вкладов. Фононный вклад представляет собой сумму одного слагаемого Дебая и двух слагаемых Эйнштейна, характеристические температуры которых равны $\theta_D = 235$ K, $\theta_{E_1} = 449$ K и $\theta_{E_2} = 85$ K, соответственно.

Рисунок 1.10. Теплоёмкости клатрата Na_8Si_{46} по данным [52—54]

Рисунок 1.11. Температурная зависимость теплоёмкости клатрата Ba₈Cu₁₆P₃₀ [55]

1.3 Динамика кристаллической решётки клатратов и клатратоподобных соединений

В работе [56] авторы изучили динамику кристаллической решётки и определили термическое расширение для двух серий тройных соединений: $Ba_8Me_xGe_{46-x}$ и $Ba_8Me_xSi_{46-x}$, где M = Cu, Zn, Pd, Ag, Cd, Pt, Au и для четверных соединений $Ba_8NiZn_{6,6}Ge_{38,4}$ и $Ba_8NiZn_7Ge_{38}$. Также исследованы зависимости теплового расширения от соотношения Si/Ge в соединении $Ba_8Cu_5Si_xGe_{41-x}$ в диапазоне температур от 4,2 до 300 К. Низкотемпературные данные сравниваются с параметрами решётки монокристаллов тех же соединений, измеренные при трёх различных температурах 100, 200 и 300 К. Количественное описание теплового расширения обеспечивает хорошее соответствие со значениями температуры Дебая и Эйнштейна, а также с данными, полученными из рентгенографии и измерения удельной теплоёмкости. Сравнение зависимостей параметра элементарной ячейки от температуры для некоторых клатратов представлено на Рисунке 1.12.

Рисунок 1.12. Температурные зависимости параметра решётки клатратов І-го типа на основе кремния и германия, □ — вакансия. По данным работы [56]

В работе [52] авторами было проведено исследование тепловых и структурных свойств клатрата Na₈Si₄₆. Параметры решётки были измерены в диапазоне 100 – 330 К (Рисунок 1.13). Проведённые теоретические расчёты вполне точно воспроизводят экспериментальные значения теплового расширения. Кроме того,

Рисунок 1.13. Температурная зависимость параметра решётки клатрата Na₈Si₄₆ [52] теоретические результаты позволяют рассчитать параметр Грюнайзена для Na₈Si₄₆, который показывает усиление ангармоничности при низких температурах.

1.4 Электрические, электронные, термо-электрические и магнитные свойства клатратов

Авторы работы [57] провели исследования зависимости полного электрического сопротивления (импеданса) серии клатратов $Sn_{24}P_{19,3}Br_xI_{8-x}$ от температуры и частоты переменного тока. Удельное сопротивление образцов измерялась в режиме постоянного тока при температурах от 0 до 12 К (Рисунок 1.14). Энергия активации E_A была рассчитана с помощью соотношения $\rho \sim exp(E_A/kT)$. С увеличением атомов брома значениях энергии активации монотонно растёт от 18 до 77 мэВ. Наличие корреляций между значениями энергии активации и составом клатрата может быть связано с тем, что атомы галогена, используемые в качестве гостей, имеют разные ионные радиусы, а атомное замещение влияет на степень деформаций в кристаллической структуре.

Авторы работы [23] провели исследования электрических и термоэлектрических свойств клатратов VII-го типа $SrNi_2P_4$, $BaNi_2P_4$, $BaCu_2P_4$. Данные соединения показывают характерный для металлов рост удельного сопротивления с ростом температуры (Рисунок 1.15, а)). Удельное сопротивление $BaCu_2P_4$ несколько больше, чем у никельсодержащих соединений. Коэффициент Зеебека ни-

Рисунок 1.14. Температурная зависимость сопротивления серии клатратов Sn₂₄P_{19,3}Br_xI_{8-x} и значения энергии активации (мэВ) [57]

кельсодержащих клатратов не достигает значения 2 мкВ K^{-1} . Коэффициента Зеебека у Ва Cu_2P_4 больше, чем у остальных клатратов VII-го типа и достигает максимального значения 30мкВ K^{-1} при комнатной температуре (Рисунок 1.15, б)). Кроме того, коэффициентом Зеебека у соединения Ва Cu_2P_4 отрицателен в температурной области 2 – 88 К.

Авторы работы [21] провели исследования магнитных свойств диамагнитного клатрата $Sn_{20,5}As_{22}I_8$. На Рисунке 1.16 представлена температурная зависимость магнитной восприимчивости для данного вещества. Увеличение $\chi(T)$ при низких температурах может быть связано со следами парамагнитных примесей, проявление которых пренебрежимо мало при 300 К, а слабая зависимость от внешнего магнитного поля во всем диапазоне температур вероятно происходит из-за следов ферромагнитных примесей.

По результатам исследования температурной зависимости удельного электрического сопротивления авторы установили, что $Sn_{20,5}As_{22}I_8$ демонстрирует свойства полупроводника. Значение коэффициента Зеебека при комнатной температуре равно — 180 мл · K^{-1} . Значение ширины запрещённой зоны составляет 0,45 эВ, что на порядок больше, чем у $Sn_{24}P_{19,3}I_8$.

Рисунок 1.15. Температурные зависимости удельного сопротивления (a) и коэффициента Зеебека (б) клатратов SrNi₂P₄, BaNi₂P₄, BaCu₂P₄ [23]

Рисунок 1.16. Молярная магнитная восприимчивость клатрата Sn_{20,5}As₂₂I₈ при различных магнитных полях [21]

В работе [58] представлены исследования магнитных свойств клатратов следующих составов: $Sn_{24}P_{19,3(2)}Br_xI_{8-x}(x = 0, 1, 2, 3, 5, 7, 8)$ и $Sn_{24}P_{19,3}Cl_{0.5}I_{7,5}$. Типичные температурные зависимости магнитной восприимчивости $\chi(T)$ для клатратов $Sn_{24}P_{19,3}Br_2I_6$ и $Sn_{24}P_{19,3}Cl_{0,5}I_{7,5}$ представлены на Рисунке 1.17.

Слабая зависимость $\chi(T, H)$ от внешнего магнитного поля во всем температурном диапазоне обусловлена наличием ферромагнитных примесей (несколько атомов на миллион). Также во всех образцах были обнаружены сигналы, указывающие на сверхпроводимость при T \approx 3,8 K и μ_0 H = 0,01 Tл. Эти признаки сверхпроводимости могут быть объяснены наличием незначительных примесей элементарного олова (менее 0,1%).

Авторы работы [55] провели исследование электрических и магнитных свойств двух клатратов $Eu_x Ba_{8-x} Cu_{16} P_{30}$, где x = 1 и 1,4. При низких температурах магнитная восприимчивость образцов сильно увеличивается (Рисунок 1.18). $EuBa_7 Cu_{16} P_{30}$ и $Eu_{1,4} Ba_{6,6} Cu_{16} P_{30}$ претерпевают магнитные фазовые переходы при температурах 2,9 и 3,1 К соответственно. При высоких температурах оба образца ведут себя как парамагнетики Кюри-Вейса с малым диамагнитным вкладом. Эффективный магнитные моменты $m_{3\phi}$, определённые по методу наименьших квадратов, составляют 7,9(1)µ_B (x = 1,0) и 7,8(1)µ_B (x = 1,4), что достаточно близко к ожидаемому

Рисунок 1.17. Температурные зависимости молярной магнитной восприимчивости для клатратов $Sn_{24}P_{19,3}Cl_{0,5}I_{7,5}$ (1) и $Sn_{24}P_{19,3}Br_2I_6$ (2) [58]

Рисунок 1.18. Объёмная магнитная восприимчивость Eu_xBa_{8-x}Cu₁₆P₃₀ (x = 1 и 1,4) на моль европия во внешнем магнитном поле с индуктивностью 0,1 Тл [55]. На вставке показана зависимость магнитного момента от магнитной индукции при 2 К

значению для $Eu^{2+} m_{3\phi} = 7,94\mu_B$. Это свидетельствует о двухвалентном состоянии Eu в Eu_xBa_{8-x}Cu₁₆P₃₀. Температура Вейса T_{CW} составляет 1,7(8) К (x = 1,0) и 2,9(5) К (x = 1,4). На вставке к Рисунку 1.18 показана зависимость магнитного момента от магнитной индукции при температуре 2 К. Оба Eu-содержащих образца достигают ожидаемых значений насыщения при $m_{sat} = 7\mu_B$ в полях выше 3 Тл. Следовательно, магнитные измерения подтверждают электронную конфигурацию $4f^7(Eu^{2+})$.

На Рисунке 1.19 представлена температурная зависимость удельного электрического сопротивления для $Eu_xBa_{8-x}Cu_{16}P_{30}$. Образцы с x = 1,0 и x = 1,4

Рисунок 1.19. Удельное электрическое сопротивление Eu_xBa_{8-x}Cu₁₆P₃₀ (x = 1 и 1,4) [55]. На вставке показано поведение образца с x = 1 при различных магнитных полях

демонстрируют аналогичные зависимости, хотя абсолютные значения удельного сопротивления отличаются в 2,5 раза (Значение ρ при 300 К для образца с x = 1,0 достигает 2270 мкОм·см, в то время как для образца с x = 1,4 – 880 мкОм·см).

Авторы работы полагают, что это происходит из-за поликристаллической природы образцов. В целом, поведение зависимости $\rho(T)$ является металлоподобным с положительным значением производной $\partial \rho(T)/\partial T$, за исключением слабого максимума около 3 К, о котором сообщается в данной работе. Сходство $\rho(T)$ при T > 50 К для двух соединений с различным содержанием Еu свидетельствует

о близком характере их фононных спектров, это предположение было подтверждено измерениями теплоёмкости (Рисунок 1.20).

Рисунок 1.20. Низкотемпературная магнитная теплоёмкость клатрата Eu_{1,4}Ba_{6,6}Cu₁₆P₃₀ при различный магнитных полях. На вставке показана зависимость для серии клатратов Eu_xBa_{8-x}Cu₁₆P₃₀ в отсутствии поля [55]

Выводы по Главе 1

Из приведённого краткого обзора литературных источников следует, что за последние годы в различных лабораториях мира проводились интенсивные исследования физических, физико-химических свойств клатратов различных типов, а также методов их получения.

Значительная часть работ посвящена изучению электрических, термоэлектрических свойств клатратов и клатратоподобных соединений, главным образом при умеренно низких и при повышенных температурах. Из их числа наибольшее внимание авторы рассматриваемых работ уделили клатратам на основе кремния и германия. Выполнены интересные экспериментальные работы, посвящённые анализу динамики кристаллической решётки клатратов по данным рентгеновской дифракции.

Вместе с тем следует отметить, как правило, весьма лаконичный анализ сравнительно немногочисленных низкотемпературных калориметрических данных о клатратах, несмотря на значительный объём весьма ценной информации, которая может быть извлечена из низкотемпературной калориметрии.

Не выявлено работ, исследующих влияние структурного несовершенства на тепловые свойства клатратов. Не изучалось до последнего времени также влияние различной степени неупорядоченности в катионных подрешетках клатратов І-го типа на динамику их кристаллической решётки, а также особенности влияния состава катионной подрешетки на тепловые свойства клатратов.

В настоящем исследовании предпринята попытка выполнить в значительной мере отмеченные выше пробелы.

Глава 2. Теория и методы исследования температурных зависимостей теплоёмкости при низких температурах

2.1 Теории теплоёмкости

Теория Эйнштейна. Примерно в 1900 году было известно, что некоторые вещества не подчинялись закону Дюлонга-Пти и имели меньшие значения теплоёмкости при комнатных температурах, которые уменьшались при понижении температуры. Чтобы учесть эти особенности, Эйнштейн рассмотрел решётку как совокупность независимых осцилляторов, которые колеблются с одинаковой частотой, а классическое значение k_BT заменяется на среднюю энергию осциллятора, которое для 3N осцилляторов определяется выражением Планка:

$$\langle E \rangle = \frac{3Nh\nu}{e^{h\nu/k_BT} - 1}.$$
(2.1)

Дифференцируя по Т при постоянном объёме, найдём теплоёмкость:

$$C_{V} = \left(\frac{dE}{dT}\right)_{V} = 3R \left(\frac{h\nu_{0}}{k_{B}T}\right)^{2} \frac{e^{h\nu_{0}/k_{B}T}}{\left(e^{h\nu_{0}/k_{B}T} - 1\right)^{2}} = 3R \left(\frac{\theta_{E}}{T}\right)^{2} \frac{e^{\theta_{E}/T}}{\left(e^{\theta_{E}/T} - 1\right)^{2}},$$
 (2.2)

где *R* — газовая постоянная, k_B — постоянная Больцмана, $\theta_E = h\nu_0/k_B$ — характеристическая температура Эйнштейна, которая определяет частоту колебаний. Формула даёт вполне правильное качественное объяснение поведения теплоёмкости твёрдых тел при низких температурах, но количественные результаты, полученные с ее помощью, плохо согласуются с опытом. В 1911 году Нернст и Линдеман предложили использовать два, равные по значимости, вклада Эйнштейна, один с частотой ν_1 и другой с ν_2 . Эта модель успешно показывала себя в широком диапазоне температур, за исключением самых низких температур [59].

Теория Дебая. Эйнштейн предполагал, что каждый отдельно взятый атом совершает колебания независимо друг от друга. На самом деле атомы в твёрдом теле не могут колебаться с одной и той же частотой, поскольку они связаны между собой. В 1912 году Дебай рассмотрел коллективное движение атомов в кристалле как звуковую волну, а соответствующие им возбуждения передавались фононами с энергией $\hbar\omega$. Кристаллическая структура рассматривалась, как изотропный упругий континуум. Так как фононы подчиняются статистике Бозе-Эйнштейна, Дебай получил следующую формулу средней энергии фононов:

$$\langle E \rangle = \frac{9Nk_BT}{(\theta_D/T)^3} \int_0^{\theta_D/T} \frac{x^3 dx}{e^x - 1},$$
 (2.3)

где $x = \nu h/k_B T$, $\theta_D = h \nu_{max}/k_B$ — характеристическая температура Дебая.

При низких температурах ($x \ll 1$) в формуле 2.3 переделы интегрирования от 0 до θ_D/T можно заменить пределами от 0 до ∞ , так как это существенным образом не повлияет на величину получаемого интеграла:

$$\int_0^\infty \frac{x^3 dx}{e^x - 1} = \frac{\pi^4}{15}.$$
 (2.4)

Теплоёмкость в таком случае будет:

$$C_V = \left(\frac{\partial E}{\partial T}\right) = \frac{12\pi^4 N k_B}{5\theta_D^3} T^3 = \gamma_D T^3.$$
(2.5)

Эта зависимость хорошо согласуется с экспериментальными данными в узком интервале температур вблизи 0 К. При более высоких температурах такого хорошего согласия уже не наблюдается [60].

В действительности характер температурных зависимостей теплоёмкости бывает достаточно сложен и, как правило, зависит от внутренней конфигурации вещества. Недостаточно использовать только одну из представленных выше моделей, поэтому на практике часто используют объединённую модель Дебая-Эйнштейна. В некоторых случаях следует учитывать пропорциональный первой степени температуры вклад свободных электронов, а также возможный вклад двухуровневых систем (TLS).

Электронный вклад в теплоёмкость.

Наиболее значительный вклад свободных электронов в теплоёмкость металлов и соединений с металлическими свойствами наблюдается при низких температурах, ближе к абсолютному нулю.

В основу теории положен тот факт, что электроны подчиняются принципу запрета Паули. При повышении температуры электроны переходят на более высокие энергетические уровни. Переход других электронов на эти уровни невозможны, так они заняты. С ростом температуры заполняются лишь последующие верхние уровни. Подобное поведение характерно для вырожденного газа, которое сохраняется вплоть до температур плавления. В итоге тепловую энергию воспринимает лишь та часть электронов, энергия которых лежит близи энергии Ферми (E_F), они и определяют теплоёмкость электронного газа. В книгах [60, 61] представлен подробный вывод формулы для энергии электронов:

$$U(T) = U_0 + \frac{\pi^2}{6} (k_B T)^2 \frac{n}{E_F(0)},$$
(2.6)

где *n* — концентрация электронов, U_0 — энергия электронов при T = 0 K, $E_F(0) = \frac{\hbar^2}{2m}(3\pi^2 n)^{2/3}$ — энергия Ферми при абсолютном нуле температур. Отсюда для теплоёмкости при постоянном объёме получено следующее:

$$C_V = \frac{dU(T)}{dT} = \frac{n(\pi k_B)^2}{2E_F(0)}T = \gamma T.$$
 (2.7)

Сравнивая полученное выражение с классическим результатом для идеального газа при комнатной температуре, можно прийти к выводу, что на долю электронного газа в теплоёмкость приходится лишь около 1%.

Вклад двухуровневых систем в теплоёмкость.

Если соединение содержит ион, обладающий магнитными свойствами, то под действие кристаллического поля энергетические уровни могут расщепляться на дублеты, триплеты, квартеты и т.д. На температурных зависимостях это проявляется наличием пологих максимумов, которые принято называть *аномалией Шоттки*.

Статистическую сумму изолированного иона для дважды вырожденного уровня можно представить уравнением:

$$Z = E_0 + E_1 e^{-\frac{D}{kT}}, (2.8)$$

где D — разность энергий между основным состоянием (E_0) и возбуждённым (E_1). Найдём производную по температуре от логарифма правой и левой части:

$$\frac{dlnZ}{dT} = \frac{d}{dT}ln(E_0 + E_1 e^{-\frac{D}{kT}}) = \frac{1}{E_0 + E_1 e^{-\frac{D}{kT}}} \cdot \frac{E_1 D}{kT^2} e^{-\frac{D}{kT}}.$$
(2.9)

И тогда внутренняя энергия двухуровневой системы (two-level system, TLS) будет иметь вид:

$$U_{TLS} = RT^2 \frac{dlnZ}{dT} = N_0 \frac{E_1 D e^{-\frac{D}{kT}}}{E_0 + E_1 e^{-\frac{D}{kT}}} = N_0 \frac{D}{\frac{E_0}{E_1} e^{\frac{D}{kT}} + 1}.$$
 (2.10)

Введя новую переменную $\delta = \frac{D}{k}$, уравнение теплоёмкости примет следующий вид:

$$C_{TLS} = \frac{dU_{TLS}}{dT} = R \frac{\left(\frac{\delta}{T}\right)^2 \frac{E_0}{E_1} e^{\frac{\delta}{T}}}{\left(\frac{E_0}{E_1} e^{\frac{\delta}{T}} + 1\right)^2}.$$
(2.11)

Вероятность переходов в возбуждённое состояние увеличивается, как правило, при повышении температуры от абсолютного нуля, а теплоёмкость, как следствие,

возрастает. После достижения максимума теплоёмкость начинает падать, так как по мере роста числа частиц в возбуждённом состояний система способна принять всё меньше энергии. При высоких температурах теплоёмкость $C_{TLS}(T)$ стремится к нулю [62, 63].

Магнитный вклад в теплоёмкость.

Магноны, подобно фононам подчиняются закону распределения Планка, следовательно среднее число частиц можно определить как:

$$\langle n_k \rangle = \frac{1}{\left[e^{\hbar \omega_k / k_B T} - 1 \right]}.$$
(2.12)

Энергия магнонов может быть представлена уравнением [61]:

$$E = \int \frac{V}{4\pi^2} \left(\frac{1}{2JSa^2F_f}\right)^{3/2} \hbar^{5/2} \omega^{3/2} \hbar D(\omega) \langle n_k \rangle d\omega, \qquad (2.13)$$

где V — объем кристалла, J — обменный интеграл, F_f — постоянная, зависящая от особенностей кристаллической структуры, a — параметр решётки, S — спин. Подставляя 2.12 в уравнение 2.13 и учитывая, что при низких температурах $\hbar\omega_k >> k_BT$, получим:

$$E = \frac{V}{4\pi^2} \frac{(k_B T)^{5/2}}{A^{3/2}} \int_0^\infty \frac{x^{3/2} dx}{(e^x - 1)},$$
(2.14)

где $x = \hbar \omega_k / k_B T$, $A = 2JSa^2 F_f$. Значение интеграла может быть высчитано как $\Gamma(5/2) \cdot \zeta(5/2; 1)$, где Γ — гамма-функция, а ζ — дзета-функция Римана. Тогда энергия в расчёте на один моль вещества:

$$E = \frac{(2JS)V_m}{4\pi^2 a^3 F_f^{3/2}} \left(\frac{k_B T}{2JS}\right)^{5/2} \Gamma\left(\frac{5}{2}\right) \zeta\left(\frac{5}{2};1\right).$$
(2.15)

С учётом $\Gamma(5/2) = 3\pi^{1/2}/4$ и $\zeta(5/2;1) = 1,341$ теплоёмкость магнонов будет выражаться следующим уравнением:

$$C_M = S_j R \left(\frac{k_B T}{2JS}\right)^{3/2}, \qquad (2.16)$$

где параметр S_j зависит от типа решётки. Таким образом, при низких температурах вклад в теплоёмкость ферромагнетика пропорционален $T^{3/2}$. Обменный интеграл определяется по температуре Кюри T_C [61] и имеет следующий вид:

$$J = \frac{3k_B T_C}{2z S(S+1)},$$
(2.17)
где z — число ближайших соседних ионов. Ряд магнитных редкоземельных элементов обладают сильной анизотропией из-за взаимодействия ионов с кристаллическим электрическим полем (CEF), что ведёт к появлению энергетических разрывов (E_g) [64]. Это вызывает появление экспоненциального сомножителя в уравнении для теплоёмкости:

$$C_M \sim T^{3/2} e^{-E_g/k_B T}.$$
 (2.18)

Расчёт вклада магнонов в теплоёмкость для антиферромагнетиков проводится аналогичным образом. С учётом двойного вырождения энергия будет составлять удвоенное выражение правой части уравнения 2.13. А интегрирование по тем же пределам даёт значение $\pi^4/15$. В итоге теплоёмкость антиферромагнетика может быть представлена как:

$$C_M = S_{af} R \left(\frac{k_B T}{2J'S}\right)^3, \qquad (2.19)$$

где J' — значение обменного интеграла, S_{af} — константа, зависящая от кристаллической структуры вещества. Таким образом, теплоёмкость антиферромагнетика изменяется с температурой аналогично решёточной теплоёмкости в модели Дебая. Поэтому на практике бывает весьма сложно разделить магнитную и решёточную составляющие антиферромагнетика. Тем не менее, если для изучаемого вещества есть диамагнитный аналог, то можно в первом приближении получить магнитную теплоёмкости магнитную путём вычитания из полной теплоёмкости магнетика полную теплоёмкость диамагнитного аналога.

Точно также, если в антиферромагнетике есть энергетический разрыв, то в уравнении 2.19 появляется экспоненциальный сомножитель.

Модель «мягких» потенциалов.

Структура клатратов не является «совершенной» это обусловливает их стеклоподобный характер. Для веществ со стеклоподобной структурой свойственно увеличение удельной теплоёмкости и частоты комбинационного рассеяния при температурах ниже нескольких кельвинов. Универсальным методом описания физических свойств стекла в низкотемпературном участке являлась модель Андерсона, Гальперина, Вармы и Филлипса (модель AHVP) [65, 66]. Однако, при более высоких температурах появляются отклонения от этой модели.

В дальнейшем было показано, что модель AHVP является лишь частным случаем модели мягких потенциалов (SPM). SPM предсказывает, что в дополнение

к двухуровневым системам, которые проявляют себя при низких температурах, в стёклах имеются «мягкие» гармонические осцилляторы, обусловливающие аномалии, происходящие при более высоких температурах.

Согласно [67] вклад двухуровневых систем в теплоёмкость в SPM определяется как:

$$C_{SPM}(T) = \pi^2 \left(\frac{2}{9}\right)^{1/3} \frac{\mathscr{P}_0 \eta_L^{5/2}}{W} k^2 T \ln^{1/3} \left(\frac{W}{kT} \sqrt{\frac{t_{exp}}{\tau_{min}(T)}}\right), \qquad (2.20)$$

где $\tau_{min}(T)$ — время релаксации, \mathscr{P}_0 — константа, η_L — параметр, W — характеристическая энергия.

Удельная теплоёмкость имеет почти линейную температурную зависимость (что совпадает с результатами для модели AHVP). Также $C_{SPM}(T)$ слабо зависит от времени проведения эксперимента (t_{exp}).

Итоговая формула теплоёмкости. Методика нахождения параметров аппроксимации.

Подводя алгебраическое суммирование описанных выше вкладов, можно получить общую формулу для удовлетворительной аппроксимации экспериментальных данных $C_V(T)$ для клатратов І-типа:

$$C_V(T) = a_{SMP}T + a_D C_D(\theta_D/T) + a_{E_1} C_{E_1}(\theta_{E_1}/T) + a_{E_2} C_{E_2}(\theta_{E_2}/T) + C_{TLS}(T).$$
(2.21)

Использование уравнения 2.21 существенно затруднено из-за семи (один входит в уравнение 2.11) рассчитываемых параметров. Тем не менее, в учёт берётся то, что при разных температурах разные слагаемые вносят неравномерный вклад в общую теплоёмкость. При самых низких температурах (2 – 5 K) проявляют себя линейная и (в меньшей степени) дебаевская компоненты, также возможен вклад двухуровневых систем $C_{TLS}(T)$. Погрешности определения параметров этих вкладов могут быть довольно большими — до 10 %. Значения θ_{E_1} , a_{E_1} и a_{E_2} можно оценить, используя соответствие экспериментальных и расчётных данных объёма элементарной ячейки. При более высоких температурах (50 – 300 K) помимо эйнштейновских компонент теплоёмкости, дебаевская составляющая $C_D(T)$ начинает играть все более важную роль. Значение δ , входящего в уравнение $C_{TLS}(T)$ оценивается по методу описанного в работе [68]. Для более точной оценки параметров используются координаты C_V/T^3 от T^2 .

Немалую роль играет особенность структуры соединений. Например, клатраты І-го типа, состоят из 2-х видов многогранников (см. 1.1.1). Гости, расположенные в центрах этих многогранников, колеблются с разными частотами. Это обуславливает наличие двух вкладов Эйнштейна в уравнении 2.21. Соотношение количества 24вершинных и 20-вершинных многогранников — 6 : 2 указывает на связь параметров a_2 и a_1 : $a_2/a_1 = 3$. Данное соотношение может немного отклонятся от 3, так как, по нашим оценкам, погрешность определения взаимозависимых значений θ_i и a_i в процессе подбора довольно высока (около 5%).

Получаемая в эксперименте теплоёмкость является изобарной (C_P), а аппроксимирующее уравнение 2.21 позволяет выразить изохорную теплоёмкость (C_V). Для твердого тела, элементарная ячейка которого принадлежит кубической сингонии, теплоёмкости связаны соотношением:

$$C_P - C_V = T V \alpha_V^2 / \kappa_T, \qquad (2.22)$$

где α_V — объемный коэффициент теплового расширения, κ_T — изотермическая сжимаемость, Т — абсолютная температура, а V — молярный объём. В работе [52] было обнаружено, что для Na_8Si_{46} разница между C_P и C_V при комнатной температуре составляет около 5% и уменьшаться менее чем до 0,1% при 100 К. Следовательно C_P и C_V можно считать сопоставимыми при температурах до 300 К.

2.2 Аппаратура для экспериментального исследования теплоёмкости твёрдых тел при 2 – 300К

Теплоёмкость исследуемых образцов измерялась в калориметре ООО «Термакс» адиабатическим методом с прерывистым подводом тепла [69—73].

Состав установки:

- 1. Многоцелевой криостат БКТ-21;
- 2. Ячейка для измерения теплоёмкости;
- 3. Система сбора и обработки данных АК-9.

Внешняя вакуумная оболочкой криостата (4) представляет собой трубку размером 127х4,4 см. В верхней её части расположены вакуумные вентили, газовые соединения и разъем RS32 (9) для подключения системы сбора и обработки данных. Внутри в нижней части расположена съёмная рабочая область криостата, размеры которой 2,6 х 16 см. Вся конструкция в собранном виде может быть погружена в 40-литровый сосуд Дьюара с жидким гелием или жидким азотом (Рисунок 2.1).

Образец (или контейнер с образцом) находится внутри медного экрана цилиндрической формы. Он вложен во второй экран и закреплён там нейлоновыми нитями.

Рисунок 2.1. Схема низкотемпературной калориметрической установки [73]: 1 — капиллярный канал; 2 — угольный сорбент; 3 — адиабатический экран; 4 — внешняя вакуумная оболочка криостата; 5 — внешний экран; 6 — термометр сопротивления Fe/Rh; 7 — тепловые перехваты; 8 — наружный экран; 9 — вакуумный герметик; 10 — вакуумный клапан; 11 — разъем RS32; 12 — капиллярный клапан

Внутренний экран является адиабатическим (3), а внешний экран (5) необходим для дополнительной температурной изоляции.

От головки криостата до рабочей области проведён соединитель, который поддерживает весь блок в вакуумной оболочке и является основой для подведения соединительных проводов к термометру (6), термопарам и нагревателям (3, 5, 8). Также по трубке соединителя происходит испарение гелия, проходящего по капилляру (1), что позволяется опуститься до температур около 2 К. Третий экран крепится к соединителю тремя шурупами.

По поверхностям всех трёх экранов проклеены нагреватели, изготовленные из манганиновой проволоки диаметром 0,06 мм, сверху нагреватели покрыты одним слоем медной фольги толщиной 0,03 мм для уменьшения теплообмена излучением.

На дне вакуумной оболочки криостата расположены встроенный сорбционный насос (2), позволяющий получить более глубокий вакуум во время охлаждения до температуры криоагента.

Для измерения температуры используется железо-родиевый термометр, который фактически измеряет температуру внешнего медного экрана. Но во время измерений система термопар поддерживает его температуру равной температуре адиабатического экрана с точностью до нескольких десятых милликельвин. Разность температур контролируется автоматическими контроллерами системы AK 9,02, работающими вместе с персональным компьютером. Эта система также автоматически регистрирует температуру и является источником питания для нагревателей. Работа системы сбора данных осуществляется специализированной компьютерной программой, написанной в среде Turbo Pascal 7,0.

Особенности данной установки:

- температурный диапазон измерения 1,8 350 К;
- температурная стабильность: 0,2 мК вблизи 0,6 К, 2 мК вблизи 350 К;
- предел допускаемого значения относительной погрешности измерения в температурных диапазонах:
 - 1,8 12 K: 3%;
 - 12-40 K: 2%;
 - 40 350 K: 0,5%;
- средняя скорость испарения гелия 2,5 л/день;
- объем образца: менее 1 куб. см;
- общая масса примерно 5 кг.

Теплоёмкость калориметрической ячейки определялась в результате серии калибровочных измерений, проводимых с эталонным веществом. В качестве эталонного вещества для калориметра была использована электрическая медь чистоты 99,996%, переплавленная и отожженная в вакууме в соответствии с рекомендациями ВНИИФТРИ [74]. Экспериментальные данные калибровочных измерений зависимости теплоемкости от температуры эталонной меди в интервале 2 – 300 К приведены на Рисунке 2.2.

Рисунок 2.2. Экспериментальные (точки) и табличные (линия) значения молярной теплоемкости Си в интервале температур 2 – 300 К

Относительное отклонение экспериментальных данных от теплоемкости меди иллюстрирует Рисунок 2.3. На графике видно, что погрешность измерения теплоемкости лежит в пределах, заявленных в паспорте калориметра.

2.3 Методика получения образцов клатратов

Синтез, а также проверка качества всех исследуемых образцов были проведены на базе химического факультета МГУ им. М. В. Ломоносова. Для синтеза всех образцов использовался стандартный ампульный метод.

Клатрат $Sn_{24}P_{19,4}Br_8$. Соединение было приготовлено из мелкоизмельчённого олова (порошок был просеян через сито с размерами пор 75 микрон), красного

Рисунок 2.3. Относительные отклонения экспериментальных значений теплоемкости меди от табличных величин в интервале температур 2 – 300 K, δ = $\frac{C_{3 \text{кс.}} - C_{\text{табл.}}}{C_{\text{табл.}}} \cdot 100\%$

фосфора и ранее синтезированного дибромида олова [42]. Все измельчённые компоненты были запаяны в кварцевой ампуле. Так как олово плавится при низкой температуре, постепенный нагрев проводился до достижения температуры плавления олова. Затем смесь быстро нагревали до 400°C и отжигали при этой температуре в течение 7 дней, в дальнейшем происходило медленное охлаждение до 200°C и, наконец, остывание до комнатной температуры при выключенной печи. Увеличение температуры отжига приводило к распаду соединения. Рентгенограмма показала три отражения, принадлежащие к неопознанной посторонней фазе(ам). Поэтому отжиг проводили дважды для достижения однофазности образца.

Химический анализ синтезированного образца был проверен методом рентгеновской флуоресцентной спектроскопии (рентгеновский универсальный спектрометр «Реном», ЗАО «НТЦ Экспертцентр») в гелиевой атмосфере, который подтвердил состав $Sn_{24}P_{19,4}Br_8$.

Клатраты $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$. Для приготовления соединений были использованы металлическое слитки олова и цинка с чистотой 99,99%. Красный фосфор был предварительно очищен последовательным промыванием в водном растворе *KOH* (30%), в воде, этаноле, дважды в диэтиловом эфире и впоследствии высушен в вакууме. Йодид олова (*IV*) синтезировали по реакции избытка олово с йодом в CCl_4 . Порошковая рентгенограмма галогенида олова (камера Nonius FR-552, излучение $Cu - K_{\alpha_1}$, $\gamma = 1,540598 \text{ Å}$) не выявила посторонних фаз.

Соединения $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$ готовили нагреванием соответствующих стехиометрических смесей олова, цинка, красного фосфора и йодида олова (*IV*) в герметичных трубках из диоксида кремния в вакууме при 773 К в течение от 5 до 7 дней. Затем образцы были перетёрты и нагреты в запаянных кварцевых ампулах при 573 К ещё на 14 дней с последующим медленным охлаждением (около 20 К в час) до комнатной температуры. После второго отжига образцы выглядели как черные воздухо- и влагостойкие гомогенные порошки [75].

Проверка поликристаллических порошков с помощью рентгенографии (Rigaku Miniflex) не выявила наличие посторонних фаз. С помощью устройства Sinter Land Labox 625 порошки спрессовывались в течение 15 минут искровым плазменным спеканием при температуре 773 К и давлении 40 МПа. В результате были получены таблетки диаметром 10 мм и высотой 15 мм, плотность которых составила 99% от кристаллических данных. XRD анализ не выявил признаков разложения. Сканирующий микроскоп JSM JEOL 6490LV, оснащённый прицельным анализатором INCA, показал отсутствие градиента состава по всей поверхности образцов.

Клатрат Sn₁₈In₆As_{21,5}I₈. Соединение получено из прекурсоров *SnAs* и *InAs*, которые были использованы для ускорения достижения равновесного состояния. Реакция включает только измельчённые и плотно смешанные твёрдые компоненты, а также газовую фазу. Содержание примесей (непрореагировавших *SnAs*) не более чем 2% по массе. Оптимальная температура отжига была выбрана в диапазоне от 803 до 823 К [22]. Рентгенограмма (Stoe STADI-P, Радиация *Cu* – K_{α_1}) не обнаружила следов каких-либо примесных фаз.

Клатраты SrNi₂P₄, BaNi₂P₄ и EuNi₂P₄. Для приготовления образцов использовались следующие исходные материалы: куски стронция (99,9%), бария (99,95%) и европия (более 99,5%), порошкообразный никель (99,999%) и предварительно очищенный красный фосфор (99,5%). Чтобы удалить поверхностный кислород, никель предварительно был нагрет потоком водорода до температуры 1073 К. Все операции проводились в закрытой камере в аргоновой среде. Для каждого соединения исходная смесь элементов, взятых в стехиометрическом соотношении и с общим весом 1,0–1,5 г была спрессована в таблетку, которая была запечатана в кварцевую трубку и затем помещена в печь. Образцы отжигали при 1123 К (*SrNi*₂*P*₄ и *BaNi*₂*P*₄) и при 873 К (*EuNi*₂*P*₄) в течение 120 ч, а затем охлаждали в выключенной печи. После высокоскоростного помола образовавшихся продуктов проводилась повторная прессовка и отжиг при 1113 К в течение 4 недели.

Рентгеновский дифракционный анализ проведённый для образцов с *Ba* и *Sr* (STADI-P (Stoe), излучение CuK_{α_1}) показал лишь малые следы примесей в конечных продуктах.

Образцы были спрессованы методом искрового плазменного спекания(ИПС), который реализован в устройстве SinterLand Labox-625. Плотность образцов в 85 – 86%, относительно плотности рентгеновских лучей, достигается спеканием при давлении 50 МПа и температуре 773 К в течение 5 мин. Точность определения относительной плотности не хуже 1%. Способы получения образцов также описаны в работах [23, 26].

После проведения эксперимента эталонный плотно спрессованный образец $EuNi_2P_4$ был перемолот в агатовой ступке в чёрный поликристаллический порошок. Затем он был проверен методами порошковой рентгенографии (дифрактометр STOE STADI P, $Mo - K_{\alpha_1}$ излучение, $\lambda = 0,70930$ Å, монохроматор Ge(111), детектор Dectris Mythen 1K) и энергодисперсионной рентгеновской спектроскопии (Zeiss EVO MA 15, сканирующий электронный микроскоп, оснащённый системой Bruker Quantax EDX, детектором вспышки X 630 M), которые не выявили наличие посторонних фаз.

Клатратоподобное соединение Eu₇Cu₄₄As₂₃. Исходными материалами для приготовления образца были слиток Eu, а также порошкообразные Cu и As, чистота которых были выше 99%. Все манипуляции проводились в камере с аргоном (MBRAUN 120B-G, $p(O_2/H_2O) < 1$ ppm). Стехиометрическая смесь элементов, а также около 3% электроположительного металла для компенсации летучести, были заключены в кварцевую трубку с углеродистой футеровкой. Нагрев происходил со скоростью ~ 30°C/ч с тремя перерывами по 12 часов, которые происходили через каждые 200°C. При достижении конечной температуры ($800^{\circ}C$) образец выдерживался ещё в течение 48 часов. Полученная смесь была повторно обработана, спрессована в таблетки и ещё раз отожжена при $800^{\circ}C$ до достижения равновесного состояния. Для получения монокристалла образец был расплавлен с помощью дуговой плавки в очищенном аргоне и дополнительно отожжён при $800^{\circ}C$ в течение двух недель, в дальнейшем погашен холодной водой.

Фазовый анализ проводили с использованием порошковой рентгенограммы, записанной на усовершенствованный дифрактометр BRUKER D8 в геометрии отражения с использованием кремниевого полосового детектора LynxEye или Huber Imaging Plate Guinier камеры G670 (излучение CuK_{α_1} , монохроматор Ge (111), $\lambda = 1,540598 \mathring{A}$).

Для металлографического исследования микроструктуры образца он был встроен в двухкомпонентную эпоксидную смолу с серебряным наполнителем (H20E; ЭПО-ТЭК) для подведения заряда при электронно-микроскопическом исследовании. Области с площадью примерно 9 мм² были отполированы алмазным порошком (0,25 мкм). В качестве смазочных материалов для микроструктурного приготовления чувствительных к воде интерметаллических фаз использовалась смесь изопропанола и этанола.

Для определения химического состава и проверки образца на возможные загрязнения посторонним элементами, такими как кислород, была использована энергодисперсионная рентгеновская спектроскопия (EDXS). Длинноволновый дисперсионный рентгеновский спектроскопический анализ (WDXS) был реализован с использованием электронного микрозонда CAMECA SX100 с вольфрамовым катодом [27].

Выводы по Главе 2

В данной главе кратко рассмотрены различные подходы к описанию температурных зависимостей теплоёмкости твёрдых тел. Наличие парамагнитного иона в соединении приводит к магнитному вкладу в теплоёмкость. Несовершенство кристаллической структуры может привести к вкладу двухуровневых систем.

Описана методика проведения эксперимента по измерению теплоёмкости твёрдых тел при низких температурах. Рассмотрены способы получения необходимых для исследования клатратов и клатратоподобных соединений. Содержание примесей и посторонних фаз в синтезированных образцах клатратов и клатратоподобных соединений не выявлено. Это подтверждается рентгеноструктурным и химическим анализами. Экспериментальные температурные зависимости молярных теплоёмкостей клатратов и клатратоподобных веществ получены на описанной выше калориметрической установке фирмы «Термакс» адиабатическим методом с периодическим нагревом в температурном интервале 2 – 300 К.

3.1 Клатрат Sn₂₄P_{19,4}Br₈

Экспериментальные величины удельной теплоёмкости C_P клатрата $Sn_{24}P_{19,4}Br_8$, полученные в настоящем исследовании, приведены в Таблице 4.

Таблица 4.

Т, К	CP	T, K	CP	T, K	CP
1	2	3	4	5	6
3,07	$2,630 \cdot 10^{-5}$	39,78	$9,971 \cdot 10^{-2}$	161,34	0,2551
3,90	$4,410 \cdot 10^{-5}$	42,35	0,1062	165,94	0,2583
4,47	$8,320 \cdot 10^{-5}$	44,93	0,1109	170,55	0,2610
5,05	$1,591 \cdot 10^{-4}$	47,51	0,1185	175,17	0,2632
5,63	$2,593 \cdot 10^{-4}$	50,10	0,1241	179,79	0,2654
6,22	$4,972 \cdot 10^{-4}$	52,71	0,1277	184,42	0,2683
6,83	$7,469 \cdot 10^{-4}$	55,32	0,1330	189,04	0,2715
7,45	$1,058 \cdot 10^{-3}$	57,94	0,1379	193,67	0,2740
8,08	$1,493 \cdot 10^{-3}$	60,56	0,1429	198,31	0,2752
8,69	$2,050 \cdot 10^{-3}$	63,18	0,1477	202,96	0,2769
9,31	$2,772 \cdot 10^{-3}$	65,82	0,1521	207,61	0,2786
9,94	$3,557 \cdot 10^{-3}$	68,46	0,1564	212,24	0,2813
10,58	$4,410 \cdot 10^{-3}$	71,15	0,1606	216,88	0,2833
11,22	$5,610 \cdot 10^{-3}$	73,81	0,1646	221,48	0,2831
11,86	$7,018 \cdot 10^{-3}$	76,47	0,1688	225,90	0,2840
12,50	$8,416 \cdot 10^{-3}$	79,13	0,1730	230,82	0,2860
13,17	$1,003 \cdot 10^{-2}$	81,79	0,1767	235,45	0,2867
13,83	$1,191 \cdot 10^{-2}$	84,46	0,1807	238,34	0,2872
14,49	$1,402 \cdot 10^{-2}$	87,12	0,1848	241,00	0,2877

Удельная теплоёмкость клатрата $Sn_{24}P_{19.4}Br_8 C_P(T)$, Дж/(г·К)

1	2	3	4	5	6
15,16	$1,604 \cdot 10^{-2}$	89,80	0,1883	244,73	0,2882
15,84	$1,828 \cdot 10^{-2}$	93,34	0,1935	249,91	0,2894
16,53	$2,074 \cdot 10^{-2}$	97,77	0,1990	253,87	0,2904
17,22	$2,298 \cdot 10^{-2}$	102,23	0,2043	259,41	0,2904
17,92	$2,593 \cdot 10^{-2}$	106,70	0,2096	262,78	0,2914
18,94	$2,951 \cdot 10^{-2}$	111,19	0,2147	267,79	0,2914
20,29	$3,478 \cdot 10^{-2}$	115,69	0,2195	272,80	0,2931
21,79	$4,101 \cdot 10^{-2}$	120,20	0,2239	265,55	0,2921
23,40	$4,722 \cdot 10^{-2}$	124,73	0,2278	270,56	0,2921
25,04	$5,364 \cdot 10^{-2}$	129,30	0,2323	275,64	0,2931
26,70	$5,985 \cdot 10^{-2}$	133,86	0,2359	279,43	0,2936
28,38	$6,473 \cdot 10^{-2}$	138,42	0,2396	283,99	0,2941
30,26	$6,964 \cdot 10^{-2}$	142,98	0,2427	288,44	0,2948
32,22	$7,638 \cdot 10^{-2}$	147,56	0,2453	292,93	0,2948
34,72	$8,492 \cdot 10^{-2}$	152,15	0,2492	297,41	0,2948
37,24	$9,289 \cdot 10^{-2}$	156,74	0,2524	301,83	0,2958

Продолжение Таблицы 4

Поскольку $Sn_{24}P_{19,4}Br_8$ является полупроводником и не содержит парамагнитных ионов [58], его теплоёмкость, очевидно, определяется главным образом колебаниями кристаллической решётки. Рассмотрим теплоёмкость $Sn_{24}P_{19,4}Br_8$ в координатах C_V/T^3 от T^2 и C_V от T (Рисунок 3.1). Величины молярных теплоёмкостей клатрата $Sn_{24}P_{19,4}Br_8$, по которым был построен график, приведены в Таблице П.29 в приложении.

Когда температура стремится к нулю, наблюдается рост на зависимости C_V/T^3 от T^2 , что может быть отнесено к неупорядоченности в расположении атомов-гостей в подрешётке хозяина и может быть рассмотрено в модели мягких атомных потенциалов (Soft Atomic Potential), удовлетворительно воспроизводимых линейно зависимым вкладом в теплоёмкость $C_{SPM} = 0,00206 \cdot T$ (Рисунок 3.1, кривая 2) [67]. График C_V/T^3 от T^2 показывает отчётливый бугор в диапазоне 15 – 2000 K², что указывает на наличие вклада Эйнштейна в теплоёмкость. В ряде работ (см. например, [1, 76, 77]) установлено, что колебания атомов-гостей и матрицы-хозяина не являются независимыми. Таким образом, анализ термодинамических данных с использованием модели Эйнштейна может вызвать вопросы. Однако сравнение результатов анализа термодинамических свойств некоторых клатратов в приближении Дебая-Эйнштейна с данными рамановского рассеяния свидетельствует об очень

Рисунок 3.1. Температурные зависимости теплоёмкости клатрата $Sn_{24}P_{19,4}Br_8$ и результат аппроксимации в приближении Дебая-Эйнштейна с использованием второго ряда Таблицы 5: C_V/T^3 от T^2 (a); C_V от T(б). 1 — экспериментальные данные, 2 — C_{SPM} , 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $\sum C_i$

близких значениях рамановских частот с частотами эйнштейновских колебаний, приписываемых атомам-гостям. Например, рамановские моды для колебаний гостевых атомов в клатрате $Sr_8Ga_{16}Si_{30}$ составляют 43 и 80 см⁻¹ [78]. В более ранней работе [79] в результате анализа теплоёмкости этого клатрата было показано, что частоты Эйнштейна, характеризующие колебания атомов-гостей (атомы стронция) составляют 44 и 83 см⁻¹. Аналогичные значения частот эйнштейновских колебаний гостей и рамановских мод также наблюдаются для клатрата $Sr_8Ga_{16}Ge_{30}$ [78, 80]. Несмотря на то, что причина такого строгого соответствие требует специального изучения, модель Дебай-Эйнштейна лишь недавно стала широко использоваться для анализа фононных свойств клатратов [30, 81].

В принятой упрощённой модели колебаниям атомов-гостей в клетках обоих типов мы приписываем эйнштейновский характер, позволяющий сравнивать динамику решётки исследуемого клатрата с данными для клатратов других соединений. Эти вклады имеют относительно низкие частоты и могут быть отнесены к квазинезависимым колебаниям массивных гостевых атомов брома. Основная матрица включает в себя два разных типа многогранников (см. раздел 1.1.1), гостевые атомы, расположенные в центрах этих многогранников, колеблются с разными частотами. Характеристические температуры Эйнштейна $\theta_{E_1} = 47$ K и $\theta_{E_2} = 95$ K, при которых

экспериментальная зависимость $C_V(T)$ удовлетворительно воспроизводится при температурах от 2 до 30 К (кривые 4, 5 на Рисунке 3.1 б), соответствуют этим колебаниям.

Каркас хозяина, состоящий из жёстко связанных между собой атомов, должен характеризоваться дебаевским типом колебаний. Функция теплоёмкости Дебая с характеристической температурой Дебая $\theta_D = 435$ K, совмещённая с уже описанными компонентами Эйнштейна, удовлетворительно воспроизводят экспериментальные значения теплоёмкости клатрата в диапазоне температур 30 – 300 K (Рисунок 3.2 б). Исходя из нашего первоначального анализа экспериментальных данных, удовлетворительное приближение теплоёмкости $Sn_{24}P_{19,4}Br_8$ можно получить по следующей формуле:

$$C_V = a_{SPM}T + a_1C_D(\theta_D/T) + a_2C_E(\theta_{E_1}/T) + a_3C_E(\theta_{E_2}/T).$$
 (3.1)

Здесь коэффициенты a_i представляют собой долю i-го вклада в общую теплоёмкость, а C_D и C_E — функции теплоёмкости Дебая и Эйнштейна соответственно. Значения a_i , θ_D и θ_{E_j} оцениваются исходя из наилучшего соответствия экспериментальным данным (Таблица 5). Отношение количества 24-вершинных многогранников к количеству 20-вершинных многогранников в кристаллической структуре составляет 3 : 1, тогда как отношение $a_3 : a_2$ соответствующих вкладов, рассчитанных по формуле 3.1, составляет 9,2,(см. Таблицу 5) что указывает на недостатки модели.

Из литературы [82] известно, что экспериментальная кривая может быть удовлетворительно описана с использованием различных наборов компонент Дебая и Эйнштейна с различными характеристическими температурами. Вопрос в том, какой из возможных наборов вкладов и их коэффициентов (a_i , θ_k) наилучшим образом описывают фактический фононный спектр данного соединения. Мы полагаем, что наилучшее множество (a_i , θ_k) должно надёжно описывать по крайней мере два экспериментально измеренных свойства, которые возникают впоследствии колебания кристаллической решётки. Поэтому при исследовании мы одновременно описывали тепловые зависимости как теплоёмкости, так и теплового расширения клатрата $Sn_{24}P_{19,4}Br_8$.

Авторы [83] проанализировали зависимость V(T) клатрата в приближении Дебая-Эйнштейна с использованием подхода, описанного в работе [68] со значениями (a_i , θ_k), указанными в первой строке Таблицы 5. Экспериментальная и расчётная кривые объёма элементарной ячейки практически совпадают при температурах выше 120 К [83]. Однако при более низких температурах экспериментальные данные

Рисунок 3.2. Температурные зависимости теплоёмкости клатрата $Sn_{24}P_{19,4}Br_8$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V/T^3 от T^2 (a); C_V от T (б). 1 — экспериментальные данные, 2 — C_{SPM} , 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $C_{\text{деф.}}$, 7 — $\sum C_i$

заметно выше расчётных значений. Такое несоответствие очевидно показывает, что один из вкладов, значительно влияющих на тепловое расширение клатратов при низких температурах, не учтён при расчётах V(T). Это не похоже на стеклоподобный вклад, который приводит к появлению линейной температурной зависимости теплоёмкости $C_{SPM}(T)$. Этот вклад влияет на термодинамические свойства соединения только при самых низких температурах (около 1 - 2 K) и быстро уменьшается с повышением температуры [67].

Из вышеизложенного можно сделать вывод, что рассматриваемый набор компонент Дебая и Эйнштейна нельзя считать удовлетворительными. Следовательно, существует другой набор компонент, в том числе дополнительный вклад, который ответственен за выявленную низкотемпературную аномалию теплового расширения клатрата. С учётом особенностей кристаллической структуры клатрата $Sn_{24}P_{19,4}Br_8$, мы предположили что выявленная аномалия может быть связана с вкладом, подобным шотткиевскому, и обусловлена дефектами в матрице-хозяине. Под дефектами подразумеваются вакансии, а также различие координационных чисел атомов олова, которые вызывают нарушение сферической симметрии окружения гостевых атомов. В результате гостевой атом может занимать одно из двух (или более) пространственно близких, но несколько отличающихся по энергии положений. Переходы между этими состояниями приводят к появлению дефектной моды в фононном спектре клатрата. На температурной зависимости теплоёмкости этот вклад представляет собой типичную функцию Шоттки с максимумом при температуре $T_{max} \approx 0,4\delta$, где δ — разность энергий состояний, между которыми происходят переходы [61, 62]:

$$C_{\mathrm{de}\phi.}(T) = R \left(\frac{\delta}{T}\right)^2 \frac{2e^{-\frac{\delta}{T}}}{\left(2 + e^{-\frac{\delta}{T}}\right)^2}.$$
(3.2)

Учёт вклада дефектной моды $C_{\text{деф.}}(T)$ необходим для того, чтобы сдвинуть вклады $C_E(\theta_{E_1}/T)$ и $C_E(\theta_{E_2}/T)$ на зависимости C_V/T^3 от T^2 (Рисунок 3.1) в сторону более высоких температур. Для того, чтобы это реализовать значения θ_{E_1} и θ_{E_1} должны быть увеличены в соответствии с изменениями коэффициентов вкладов Эйнштейна a_3 и a_4 (Таблица 5, вторая строчка).

Остаётся открытым вопрос, на какие значения увеличивать θ_{E_1} и θ_{E_2} . При перемещении горба, представляющего собой сумму $C_E(\theta_{E_1}/T)$ и $C_E(\theta_{E_2}/T)$, вправо по оси температуры важно контролировать разность между $C_{3KC}(T)$ и суммой

 $C_{E}(\theta_{E_{1}}/T)$ и $C_{E}(\theta_{E_{2}}/T)$. Сумму компонент Эйнштейна, находящуюся в области более высоких температур следует сдвинуть до максимума $\Delta C = C_{3 \text{кс.}}(T) - \sum_{i=1,2} C_{E}(\frac{\theta_{i}}{T})$, то есть приблизительно на 15 К.

Принимая во внимание вклад дефектной моды, уравнение для теплоёмкости клатрата *Sn*₂₄*P*_{19,4}*Br*₈ будет иметь следующий вид:

$$C_V = a_{SPM}T + a_2C_D(\theta_D/T) + a_3C_E(\theta_{E_1}/T) + a_4C_E(\theta_{E_2}/T) + C_{\text{de}\phi}(T).$$
(3.3)

Рассчитанные вклады представлены в Таблице 5, вторая строчка, и изображены на Рисунке 3.2. Очевидно, что уравнение 3.3, содержащее дефектную моду, позволяет лучше описать экспериментальные значения теплоёмкости клатрата $Sn_{24}P_{19,4}Br_8$. Более того, отношение коэффициентов a_4/a_3 , характеризующих доли вкладов Эйнштейна стало равным 2,9, что очень близко к ожидаемому значению 3,0.

Очевидный интерес представляет сравнение полученных выше параметров фононной подсистемы для клатрата $Sn_{24}P_{19,4}Br_8$ с другим составом матрицы хозяина и типом гостевого атома. Для такого сравнения был выбран клатрат $Ge_{31}P_{15}Se_8$, для которого известны данные по низкотемпературной теплоёмкости [84] (они приведены в третьей строке Таблицы 5).

Анализ данных, приведённых в Таблице 5, приводит к следующим выводам:

- Коэффициент *a*₁, который характеризует стеклоподобный вклад описываемый теорией мягких атомных потенциалов, линейно изменяющийся с ростом температуры, почти не отличается для двух клатратов. С учётом заметной погрешности экспериментального определения теплоёмкости при минимальных температурах эксперимента, а также того факта, что мягкие атомные потенциалы оказывают существенное влияние на теплоёмкость неупорядоченных систем только при температуре *T* ≤ 1 K, мы ограничили этот анализ простым упоминанием этого вклада. Оба клатрата являются полупроводниками, поэтому можно исключить из рассмотрения и малый вклад свободных носителей заряда, который также является линейным.
- Коэффициенты a₂ дебаевского вклада в теплоёмкость германиево- и оловосодержащих клатратов почти равны, но при этом характеристические температуры Дебая существенно отличаются θ_D (Sn₂₄P_{19,4}Br₈)
 <θ_D (Ge₃₁P₁₅Se₈). Последнее соединение имеет самый высокий θ_D из-за меньшей массы германия по сравнению с оловом. Кроме того, Ge₃₁P₁₅Se₈ фактически является полуклатратом с элементарной ячейкой, которая в восемь раз больше по сравнению с клатратом I-го типа [85].

3. Значения коэффициентов *a*₃ и *a*₄, характеризующих два вклада Эйнштейна в теплоёмкость, также близки для двух типов клатратов. Значения характеристических температур θ_{E1} и θ_{E2} оловосодержащих клатратов несколько выше соответствующих значений германиевосодержащих клатратов из-за меньшего размера ячейки, доступной для гостевого атома.

Таблица 5.

Параметры аппроксимации для температурной зависимости теплоёмкости $C_V(T)$ клатрата $Sn_{24}P_{19,4}Br_8$. δ — энергия расщепления основного состояния

a_1 , Дж·моль $^{-1}$ К $^{-2}$	a_2	θ_D, K	a_3	θ_{E_1}, K	a_4	θ_{E_2}, K	δ, Κ
0,0201	0,52	435	0,042	47	0,39	95	
0,0201	0,56	390	0,093	81	0,29	90	45
0,0067	0,65	560	0,0936	95	0,26	130	38

3.2 Клатраты Sn₂₄P_{19,2}I₈, Sn₂₀Zn₄P_{20,8}I₈ и Sn₁₇Zn₇P₂₂I₈

Экспериментальные величины удельной теплоёмкости C_P клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$, полученные в настоящем исследовании, приведены в Таблицах 6, 7 и 8, соответственно.

Таблица 6.

Т, К	CP	T, K	CP	T, K	\mathbf{C}_{P}
1	2	3	4	5	6
2,47	$1,650 \cdot 10^{-5}$	20,95	$3,571 \cdot 10^{-2}$	145,03	0,2180
2,62	$6,904 \cdot 10^{-6}$	22,18	$4,010 \cdot 10^{-2}$	147,77	0,2199
3,25	$3,151 \cdot 10^{-5}$	23,41	$4,454 \cdot 10^{-2}$	150,50	0,2221
3,50	$4,711 \cdot 10^{-5}$	24,66	$4,880 \cdot 10^{-2}$	153,25	0,2231
3,75	$5,532 \cdot 10^{-5}$	25,91	$5,301 \cdot 10^{-2}$	155,98	0,2246
3,99	$7,040 \cdot 10^{-5}$	27,16	$5,769 \cdot 10^{-2}$	158,72	0,2262
4,23	$8,791 \cdot 10^{-5}$	28,43	$6,146 \cdot 10^{-2}$	161,46	0,2282
4,48	$1,031 \cdot 10^{-4}$	29,71	$6,514 \cdot 10^{-2}$	164,62	0,2300
4,73	$1,111 \cdot 10^{-4}$	31,18	$6,951 \cdot 10^{-2}$	167,19	0,2318
4,77	$1,165 \cdot 10^{-4}$	32,87	$7,468 \cdot 10^{-2}$	167,22	0,2311
4,98	$1,152 \cdot 10^{-4}$	34,58	$7,977 \cdot 10^{-2}$	169,80	0,2318
5,23	$1,490 \cdot 10^{-4}$	36,29	$8,441 \cdot 10^{-2}$	172,68	0,2338
5,47	$1,965 \cdot 10^{-4}$	39,25	$9,338 \cdot 10^{-2}$	174,91	0,2347

Удельная теплоёмкость клатрата $Sn_{24}P_{19,2}I_8$ C_P(T), Дж/(Γ ·K)

Продолжение Таблицы 6

			**	родолист	пе тасспиды с
1	2	3	4	5	6
5,57	$2,095 \cdot 10^{-4}$	41,00	$9,663 \cdot 10^{-2}$	175,43	0,2349
5,72	$2,282 \cdot 10^{-4}$	42,74	0,1008	178,18	0,2362
5,89	$2,398 \cdot 10^{-4}$	44,48	0,1050	179,98	0,2371
5,97	$2,598 \cdot 10^{-4}$	46,64	0,1085	180,92	0,2369
6,18	$2,313 \cdot 10^{-4}$	49,23	0,1135	183,67	0,2380
6,34	$4,005 \cdot 10^{-4}$	51,82	0,1193	186,42	0,2392
6,57	$3,936 \cdot 10^{-4}$	54,43	0,1228	187,41	0,2403
7,06	$5,438 \cdot 10^{-4}$	57,05	0,1274	189,17	0,2403
7,56	$6,664 \cdot 10^{-4}$	59,67	0,1320	191,91	0,2414
7,99	$1,367 \cdot 10^{-3}$	62,29	0,1363	194,66	0,2418
8,41	$2,277 \cdot 10^{-3}$	64,92	0,1405	197,41	0,2427
8,94	$3,192 \cdot 10^{-3}$	67,55	0,1445	200,15	0,2439
9,55	$4,070 \cdot 10^{-3}$	70,19	0,1486	203,35	0,2452
10,14	$4,613 \cdot 10^{-3}$	72,84	0,1534	207,01	0,2459
10,19	$5,045 \cdot 10^{-3}$	75,49	0,1552	210,68	0,2479
10,84	$6,155 \cdot 10^{-3}$	78,18	0,1587	214,35	0,2490
10,85	$5,561 \cdot 10^{-3}$	80,84	0,1622	218,01	0,2504
10,92	$5,758 \cdot 10^{-3}$	83,51	0,1658	221,68	0,2501
11,49	$7,430 \cdot 10^{-3}$	86,18	0,1687	225,35	0,2513
11,54	$6,818 \cdot 10^{-3}$	88,85	0,1720	229,00	0,2524
11,61	$7,031 \cdot 10^{-3}$	90,51	0,1737	232,65	0,2542
12,06	$7,836 \cdot 10^{-3}$	93,00	0,1759	236,32	0,2544
12,15	$8,896 \cdot 10^{-3}$	93,65	0,1772	239,98	0,2548
12,30	$8,390 \cdot 10^{-3}$	96,31	0,1807	243,62	0,2555
12,67	$9,396 \cdot 10^{-3}$	98,97	0,1836	247,28	0,2560
12,83	$1,047 \cdot 10^{-2}$	101,65	0,1859	250,93	0,2569
12,98	$9,907 \cdot 10^{-3}$	104,33	0,1884	254,57	0,2582
13,30	$1,082 \cdot 10^{-2}$	107,01	0,1908	258,21	0,2584
13,49	$1,220 \cdot 10^{-2}$	109,70	0,1927	261,84	0,2587
13,67	$1,150 \cdot 10^{-2}$	112,40	0,1950	265,45	0,2591
14,17	$1,389 \cdot 10^{-2}$	115,09	0,1974	269,03	0,2593
14,35	$1,349 \cdot 10^{-2}$	117,79	0,1996	272,63	0,2596
14,85	$1,593 \cdot 10^{-2}$	120,50	0,2020	276,20	0,2596
15,05	$1,558 \cdot 10^{-2}$	123,21	0,2041	279,75	0,2598
15,54	$1,777 \cdot 10^{-2}$	125,92	0,2058	283,28	0,2602
15,75	$1,750 \cdot 10^{-2}$	128,63	0,2078	286,81	0,2605
16,46	$1,976 \cdot 10^{-2}$	131,35	0,2101	290,33	0,2609
17,17	$2,205 \cdot 10^{-2}$	134,10	0,2121	293,83	0,2616
17,87	$2,472 \cdot 10^{-2}$	136,83	0,2139	297,36	0,2613
18,75	$2,757 \cdot 10^{-2}$	139,56	0,2160		

Продолжение Таблицы 6

1	2	3	4	5	6
19,79	$3,136 \cdot 10^{-2}$	142,29	0,2171		

Таблица 7.

Удельная теплоёмкость клатрата $Sn_{20}Zn_4P_{20,8}I_8$ C_P(T), Дж/(г·К)

T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6
2,47	$2,249 \cdot 10^{-5}$	45,14	$9,259 \cdot 10^{-2}$	159,54	0,2365
3,16	$4,580 \cdot 10^{-5}$	47,33	$9,669 \cdot 10^{-2}$	163,20	0,2375
3,67	$7,131 \cdot 10^{-5}$	49,95	0,1033	166,86	0,2400
4,22	$1,021 \cdot 10^{-4}$	52,59	0,1100	170,51	0,2417
4,78	$1,451 \cdot 10^{-4}$	55,22	0,1149	174,17	0,2449
5,38	$2,110 \cdot 10^{-4}$	57,85	0,1190	177,84	0,2466
5,99	$3,318 \cdot 10^{-4}$	60,50	0,1223	181,50	0,2463
6,59	$4,612 \cdot 10^{-4}$	63,15	0,1281	185,15	0,2498
7,21	$6,479 \cdot 10^{-4}$	65,85	0,1331	188,81	0,2512
7,83	$9,394 \cdot 10^{-4}$	68,59	0,1372	192,47	0,2528
8,46	$1,286 \cdot 10^{-3}$	71,16	0,1421	195,69	0,2547
9,09	$1,737 \cdot 10^{-3}$	73,74	0,1471	196,13	0,2524
9,72	$2,312 \cdot 10^{-3}$	76,40	0,1500	199,60	0,2545
10,37	$3,020 \cdot 10^{-3}$	79,05	0,1531	203,47	0,2556
11,02	$3,853 \cdot 10^{-3}$	81,73	0,1565	207,58	0,2570
11,67	$4,947 \cdot 10^{-3}$	82,28	0,1587	211,68	0,2587
12,37	$6,137 \cdot 10^{-3}$	84,94	0,1608	215,84	0,2622
13,05	$7,399 \cdot 10^{-3}$	87,62	0,1641	219,99	0,2610
13,73	$8,400 \cdot 10^{-3}$	90,28	0,1701	224,17	0,2629
14,42	$1,000 \cdot 10^{-2}$	93,39	0,1716	228,33	0,2636
15,11	$1,140 \cdot 10^{-2}$	96,95	0,1777	232,52	0,2670
15,81	$1,310 \cdot 10^{-2}$	100,51	0,1816	236,71	0,2670
16,50	$1,540 \cdot 10^{-2}$	104,08	0,1868	240,98	0,2680
17,70	$1,830 \cdot 10^{-2}$	107,65	0,1914	245,24	0,2701
17,98	$1,920 \cdot 10^{-2}$	111,24	0,1952	249,46	0,2719
19,08	$2,200 \cdot 10^{-2}$	114,84	0,2001	253,72	0,2736
20,45	$2,561 \cdot 10^{-2}$	118,44	0,2041	257,98	0,2752
22,03	$3,029 \cdot 10^{-2}$	122,05	0,2078	262,42	0,2759
23,68	$3,420 \cdot 10^{-2}$	125,67	0,2107	266,73	0,2778
25,33	$3,860 \cdot 10^{-2}$	129,29	0,2137	271,01	0,2768

5	/		

- -

Π /	T 7 7
Прололжение	Таолины /

1	2	3	4	5	6
26,99	$4,300 \cdot 10^{-2}$	132,95	0,2169	275,30	0,2794
28,70	$4,789 \cdot 10^{-2}$	136,59	0,2205	279,52	0,2785
33,21	$5,951 \cdot 10^{-2}$	137,35	0,2216	280,95	0,2785
34,70	$6,500 \cdot 10^{-2}$	140,26	0,2231	285,35	0,2805
36,47	$6,840 \cdot 10^{-2}$	141,27	0,2242	289,53	0,2815
38,19	$7,436 \cdot 10^{-2}$	144,92	0,2263	293,62	0,2824
39,90	$7,851 \cdot 10^{-2}$	148,57	0,2290	297,66	0,2831
41,63	$8,337 \cdot 10^{-2}$	152,23	0,2311		
43,36	$8,815 \cdot 10^{-2}$	155,88	0,2338		

Таблица 8.

Удельная теплоёмкость клатрата $Sn_{17}Zn_7P_{22}I_8$ C_P(T), Дж/(г·К)

T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6
2,48	$2,011 \cdot 10^{-5}$	40,14	$8,384 \cdot 10^{-2}$	158,67	0,2369
3,16	$3,871 \cdot 10^{-5}$	41,88	$8,755 \cdot 10^{-2}$	162,34	0,2388
3,67	$6,049 \cdot 10^{-5}$	43,63	$9,146 \cdot 10^{-2}$	164,63	0,2406
4,24	$8,631 \cdot 10^{-5}$	45,38	$9,556 \cdot 10^{-2}$	168,19	0,2437
4,83	$1,172 \cdot 10^{-4}$	47,54	0,1003	171,83	0,2449
5,46	$1,794 \cdot 10^{-4}$	50,15	0,1054	175,45	0,2469
6,10	$2,878 \cdot 10^{-4}$	52,76	0,1102	179,07	0,2497
6,76	$4,048 \cdot 10^{-4}$	55,38	0,1157	182,69	0,2517
7,42	$5,834 \cdot 10^{-4}$	58,01	0,1212	186,30	0,2541
8,08	$8,619 \cdot 10^{-4}$	60,65	0,1267	189,91	0,2567
8,74	$1,190 \cdot 10^{-3}$	63,34	0,1311	193,51	0,2588
9,41	$1,614 \cdot 10^{-3}$	66,03	0,1366	197,10	0,2608
10,08	$2,159 \cdot 10^{-3}$	68,72	0,1421	200,68	0,2629
10,75	$2,845 \cdot 10^{-3}$	71,32	0,1471	204,45	0,2653
11,43	$3,653 \cdot 10^{-3}$	73,92	0,1526	208,51	0,2672
12,11	$4,599 \cdot 10^{-3}$	76,58	0,1566	214,28	0,2711
12,82	$5,956 \cdot 10^{-3}$	79,24	0,1607	218,60	0,2727
13,51	$7,272 \cdot 10^{-3}$	81,91	0,1649	222,41	0,2739
14,22	$8,786 \cdot 10^{-3}$	84,58	0,1685	226,58	0,2768
14,93	$1,041 \cdot 10^{-2}$	87,26	0,1721	230,75	0,2783
15,64	$1,211 \cdot 10^{-2}$	89,93	0,1755	234,51	0,2802
16,35	$1,408 \cdot 10^{-2}$	93,06	0,1800	238,15	0,2828

1	2	3	4	5	6
17,06	$1,623 \cdot 10^{-2}$	96,63	0,1839	241,95	0,2845
17,78	$1,854 \cdot 10^{-2}$	100,86	0,1882	245,79	0,2871
18,82	$2,160 \cdot 10^{-2}$	104,39	0,1921	248,77	0,2883
20,19	$2,600 \cdot 10^{-2}$	107,96	0,1954	252,75	0,2900
21,71	$3,039 \cdot 10^{-2}$	111,54	0,1986	256,85	0,2919
23,32	$3,530 \cdot 10^{-2}$	115,14	0,2020	260,92	0,2934
24,95	$4,029 \cdot 10^{-2}$	118,74	0,2049	264,96	0,2958
26,60	$4,539 \cdot 10^{-2}$	122,34	0,2085	268,94	0,2974
28,27	$5,110 \cdot 10^{-2}$	125,96	0,2118	272,86	0,2991
29,96	$5,620 \cdot 10^{-2}$	129,58	0,2135	276,76	0,3017
30,08	$5,639 \cdot 10^{-2}$	133,20	0,2168	280,61	0,3037
31,66	$6,080 \cdot 10^{-2}$	136,84	0,2200	284,48	0,3049
33,26	$6,543 \cdot 10^{-2}$	140,47	0,2230	288,31	0,3053
33,40	$6,569 \cdot 10^{-2}$	144,11	0,2258	292,00	0,3063
34,97	$7,046 \cdot 10^{-2}$	147,75	$0,2\overline{285}$	295,38	$0,3\overline{0}63$
36,68	$7,521 \cdot 10^{-2}$	151,38	0,2314	297,00	0,3065
38,40	$7,962 \cdot 10^{-2}$	155,01	0,2343	300,10	0,3068

Продолжение Таблицы 8

В работе [86] уже сообщалось о термодинамических свойствах клатрата $Sn_{24}P_{19,2}I_8$ в температурной области от 5 до 300 К. Однако, в исследовании не был учтён вклад неупорядоченности в катионном каркасе в общую теплоёмкость. Кроме того, в работе не выявлен возможный вклад двухуровневых систем как в теплоёмкость, так и в тепловое расширение клатрата.

На Рисунке 3.3 приведены графики экспериментальных зависимостей молярной теплоёмкости клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$, соответственно, в диапазоне температур 2 – 300 К. Значения молярных теплоёмкостей клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$ представлены в Таблицах П.30, П.31 и П.32 соответственно в приложении.

Анализ температурных зависимостей теплоёмкости $C_P(T)$ трёх йодосодержащих клатратов проведён в приближении Дебая-Эйнштейна аналогично тому, что было сделано выше для клатрата $Sn_{24}P_{19,4}Br_8$ (см. 3.3). Последнее слагаемое — вклад дефектной моды, который для йодосодержащих клатратов определяется по следующей формуле:

$$C_{\text{de}\phi.}(T) = R \left(\frac{\delta}{T}\right)^2 \frac{e^{\delta/T}}{(1+e^{\delta/T})^2}.$$
(3.4)

Рисунок 3.3. Молярные теплоёмкости $C_P(T)$ клатратов $Sn_{24}P_{19,2}I_8$ (1), $Sn_{20}Zn_4P_{20,8}I_8$ (2) и $Sn_{17}Zn_7P_{22}I_8$ (3) в области 2 – 300 К

Этот вклад возникает из-за возможности гостевых атомов занимать две или более неэквивалентных по энергии позиций внутри несферических ячеек каркаса. Ещё одной причиной может быть неравномерное распределением позиций атомов различной природы в каркасе. На Рисунке 3.4 представлены различные вклады в общую теплоёмкость клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$. Параметры аппроксимации йодосодержащих клатратов представлены в Таблице 9.

Таблица 9.

Характеристические температуры Дебая (θ_D) и Эйнштейна ($\theta_{E_1}, \theta_{E_2}$), коэффициенты a_i и энергия расщепления основного состояния б йодосодержащих клатратов

Клатрат	a _{SMP}	θ_D	a _D	θ_{E_1}	a_1	θ_{E_2}	a_2	δ
$Sn_{24}P_{19,2}I_8$	3×10^{-4}	395	0,455	60	0,115	104	0,33	30
$Sn_{20}Zn_4P_{20,8}I_8$	4×10^{-4}	400	0,62	65	0,071	100	0,24	36
$Sn_{17}Zn_7P_{22}I_8$	4×10^{-4}	430	0,6	81	0,075	95	0,25	34

Для выяснения влияния состава матрицы-хозяина на термодинамические свойства клатратов наряду с клатратом $Sn_{24}P_{19,2}I_8$, исследованы составы $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$, в которых часть атомов олова замещена атомами цинка.

На Рисунке 3.5 а видно, что объем элементарной ячейки исследуемых клатратов уменьшается с увеличением числа атомов цинка (N). Так как атомный радиус у цинка

Рисунок 3.4. Температурные зависимости теплоёмкости C_V/T^3 от T^2 клатратов $Sn_{24}P_{19,2}I_8$ (а), $Sn_{20}Zn_4P_{20,8}I_8$ (б), $Sn_{17}Zn_7P_{22}I_8$ (в) и результат аппроксимации в приближении Дебая-Эйнштейна в области 2 – 300 К. 1 — экспериментальные данные, 2 — C_{SPM} , 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $C_{\text{деф.}}$, 7 — $\sum C_i$

60

больше, чем у олова, то с увеличением N происходит сближение атомов в каркасах, их усреднённая масса уменьшается, энергия связи и частота колебаний увеличиваются и, как следствие этого сжатия, увеличивается θ_D (Рисунок 3.5 в).

Характеристическая температура θ_{E_1} , отражающая квазилокализованные колебания гостевых атомов в меньших, почти сферических, ячейках, тоже заметно возрастает (Рисунок 3.5 г). А вот θ_{E_2} , относящаяся к псевдолокализованным ко-

Рисунок 3.5. Влияние различного состава подрешётки в серии клатратов $Sn_{24}P_{19,2}I_8, Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$ на: объём элементарной ячейки (а) [87], количество вакансий в матрице хозяина (б), температуры Дебая (в) и Эйнштейна (г, д)

лебаниям гостей, находящихся в более крупных и менее симметричных ячейках, напротив, уменьшилась с увеличением N (Рисунок 3.5 д). Эта тенденция объясняется

тем, что уменьшение количества вакансий с увеличением N (Рисунок 3.5 б) делает ячейку более жёсткой и в то же время поддерживает постоянство эффективного радиуса путём перераспределения атомов в окружающих положениях каркаса. В итоге это приводит к снижению частоты гостевых колебаний с увеличением количества атомов Zn. Этот факт подтверждается соответствующими значениями параметров атомного смещения (ADP), указанных для этих соединений и соответствующих значениям характеристических температур, рассчитанных из температурных зависимостей ADPs [41, 42, 75].

Значения параметров *a_{SMP}* и б для трёх йодосодержащих клатратов почти не разнятся (Таблица 9). Точность их определения невысокая из-за разброса при низких температурах, а также из-за метода, использованного для нахождения ДУС вклада. В целом это приводит к уровню неопределённости в 25–30%, что исключает возможность обсуждения их влияния на свойства клатратов.

Важно отметить, что для всех трёх соединений отношение a_2/a_1 не зависит от наличия Zn в каркасе, а его значение довольно близко к 3, что подтверждает достоверность нашего анализа.

3.3 Клатрат Sn₁₈In₆As_{21,5}I₈

Экспериментальные величины удельной теплоёмкости C_P клатрата $Sn_{18}In_6As_{21,5}I_8$ полученные в настоящем исследовании, приведены в Таблице 10.

Таблица 10.

T, K	C _P	T, K	C _P	T, K	CP
1	2	3	4	5	6
2,56	$5,249 \cdot 10^{-5}$	37,87	$7,676 \cdot 10^{-2}$	160,82	0,1984
3,32	$1,080 \cdot 10^{-4}$	40,46	$8,246 \cdot 10^{-2}$	164,40	0,1992
3,89	$1,645 \cdot 10^{-4}$	43,06	$8,801 \cdot 10^{-2}$	167,97	0,1999
4,48	$2,490 \cdot 10^{-4}$	45,67	$9,341 \cdot 10^{-2}$	171,54	0,2006
5,10	$3,395 \cdot 10^{-4}$	48,27	$9,863 \cdot 10^{-2}$	175,10	0,2014
5,73	$5,324 \cdot 10^{-4}$	50,87	0,1037	178,66	0,2019
6,34	$7,818 \cdot 10^{-4}$	53,50	0,1086	182,23	0,2025
6,97	$1,100 \cdot 10^{-3}$	56,13	0,1134	185,77	0,2032
7,59	$1,610 \cdot 10^{-3}$	58,77	0,1180	189,32	0,2038

Удельная теплоёмкость клатрата $Sn_{18}In_6As_{21,5}I_8$ С_Р(T), Дж/(Γ ·K)

			Tipe	одолжени	е гаолицы то
1	2	3	4	5	6
8,20	$2,229 \cdot 10^{-3}$	61,42	0,1224	194,81	0,2047
8,83	$2,998 \cdot 10^{-3}$	64,08	0,1267	196,33	0,2050
9,46	$3,943 \cdot 10^{-3}$	66,80	0,1310	198,80	0,2054
10,10	$5,367 \cdot 10^{-3}$	69,49	0,1350	202,51	0,2061
10,75	$7,224 \cdot 10^{-3}$	72,12	0,1388	206,51	0,2069
11,39	$9,082 \cdot 10^{-3}$	74,75	0,1424	210,54	0,2076
12,05	$1,096 \cdot 10^{-2}$	77,43	0,1459	214,58	0,2083
12,74	$1,292 \cdot 10^{-2}$	80,11	0,1493	218,72	0,2091
13,42	$1,485 \cdot 10^{-2}$	82,79	0,1525	222,83	0,2100
14,11	$1,678 \cdot 10^{-2}$	85,47	0,1556	226,99	0,2109
14,80	$1,870 \cdot 10^{-2}$	88,16	0,1585	231,17	0,2118
15,50	$2,065 \cdot 10^{-2}$	90,84	0,1613	235,30	0,2128
16,20	$2,262 \cdot 10^{-2}$	93,98	0,1644	239,52	0,2137
16,92	$2,458 \cdot 10^{-2}$	97,57	0,1677	243,69	0,2148
17,64	$2,655 \cdot 10^{-2}$	101,14	0,1708	247,96	0,2157
18,36	$2,850 \cdot 10^{-2}$	104,76	0,1737	252,17	0,2168
19,43	$3,138 \cdot 10^{-2}$	108,35	0,1763	256,33	0,2177
20,97	$3,550 \cdot 10^{-2}$	111,95	0,1788	258,47	0,2183
22,60	$3,976 \cdot 10^{-2}$	115,58	0,1811	260,65	0,2188
24,25	$4,406 \cdot 10^{-2}$	119,19	0,1833	264,83	0,2199
25,94	$4,836 \cdot 10^{-2}$	124,27	0,1859	267,61	0,2205
26,46	$4,966 \cdot 10^{-2}$	128,31	0,1880	271,82	0,2214
27,63	$5,260 \cdot 10^{-2}$	131,93	0,1894	275,94	0,2223
28,28	$5,420 \cdot 10^{-2}$	135,55	0,1909	280,14	0,2232
29,33	$5,679 \cdot 10^{-2}$	139,18	0,1924	284,24	0,2242
30,41	$5,940 \cdot 10^{-2}$	142,80	0,1935	288,27	0,2249
31,12	$6,111 \cdot 10^{-2}$	146,43	0,1948	292,29	0,2254
32,75	$6,500 \cdot 10^{-2}$	150,05	0,1957	296,23	0,2260
33,03	$6,567 \cdot 10^{-2}$	153,65	0,1968		
35.32	$7.097 \cdot 10^{-2}$	157.24	0.1975		

Продолжение Таблицы 10

На Рисунке 3.6 а приведён график экспериментальной зависимости молярной теплоёмкости и результат аппроксимации в приближении Дебая-Эйнштейна клатрата $Sn_{18}In_6As_{21,5}I_8$ в диапазоне температур 2 – 300 К. На зависимостях $C_P(T)$ также отсутствуют какие-либо видимые аномалии. Однако низкотемпературная часть функция (C_P/T^3) от (T^2) ведёт себя необычно.

Рисунок 3.6. Температурные зависимости теплоёмкости клатрата $Sn_{18}In_6As_{21,5}I_8$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V/T^3 от T^2 (a); C_V от T (б). 1 — экспериментальные данные, 2 — C_{SPM} , 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $C_{\text{деф.}}$, 7 — $\sum C_i$

Аппроксимация температурной зависимости теплоёмкости C_P проводилась с использованием соотношения 3.3. Отчётливый максимум около 10,5 К (Рисунок 3.6 б) можно отнести к эйнштейновским колебаниям гостевых атомов [84, 86]. Так как клатрат является полупроводником, то вклад свободных электронов в низкотемпературной области отсутствует [43]. Следовательно, при низких температурах необходимо учитывать только два дополнительных вклада. Это стеклоподобный вклад $C_{SPM}(T) = 0,0642 \cdot T$, который описывает случайное распределение атомов *Sn* и *In* в матрице-хозяине, а также Шоттки-подобный вклад двухуровневых систем.

Параметры аппроксимации представлены в Таблице 11. Погрешности определения θ_{E_i} , по нашим оценкам, не превышают ±2 К, отклонения при определении a_{E_i} и a_D не превышают 0,01. Погрешность определения θ_D не более ±10 К.

Таблица 11.

Параметры аппроксимации для температурной зависимости теплоёмкости $C_V(T)$ клатрата $Sn_{18}In_6As_{21.5}I_8$

a_{SMP} , Дж·моль ⁻¹ К ⁻²	a_D	$\theta_D,$	a_{E_1}	θ_{E_1} ,	a_{E_2}	$\theta_{E_2},$	δ, Κ	b
		К		К		К		
0,0642	26,75	380	5,885	55	16,05	87	19	0,4

Очевидно, что набор составляющих теплоёмкости в уравнении 3.3 отражает особенности реального фононного спектра клатрата $Sn_{18}In_6As_{21,5}I_8$ только в самых общих чертах. Тем не менее это выглядит логически оправданным, и с его помощью можно количественно описать не только температурную зависимость теплоёмкости, но и тепловое расширение клатрата $Sn_{18}In_6As_{21,5}I_8$ [88].

На Рисунке 3.5 было показано, как различия в подрешётке Sn-Zn-P влияют на термодинамические свойства трёх клатратов. Рисунок 3.7 дополняет наш анализ добавлением коэффициентов Дебая-Эйнштейна и параметров для клатрата $Sn_{18}In_6As_{21,5}I_8$. Последний клатрат содержит индий вместо цинка, а также мышьяк вместо фосфора, что делает его каркас существенно тяжелее, так как индий почти вдвое тяжелее цинка, а мышьяка в 2,5 раза тяжелее фосфора. Индий и мышьяк, как более тяжёлые, крупные атомы приводят к снижению температуры Дебая θ_D для $Sn_{18}In_6As_{21,5}I_8$ в сравнении с клатратами системы Sn - Zn - P - I. При этом объем ячеек, которые занимают атомы-гости, увеличивается, приводя к более низким значениям температуры Эйнштейна θ_{E_1} и θ_{E_2} для $Sn_{18}In_6As_{21,5}I_8$. Вклад дебаевской компоненты (a_D) уменьшается, тогда как вклад двух компонентов Эйнштейна $(a_{E_1}$ и $a_{E_2})$ увеличивается.

Рисунок 3.7. Сравнение термодинамических свойств клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$ и $Sn_{18}In_6As_{21,5}I_8$

Из проведённого анализа следует, что чем меньше характеристическая температура, тем больше фононный вклад в общую теплоёмкость при $T \leq \theta_D$. Также анализ показывает, что изменения θ_{E_1} и θ_{E_2} при изменении объёма и состава подрешётки указывают на влияние взаимодействия структуры-хозяина и гостя.

Значения молярной теплоёмкости клатрата Sn₁₈In₆As_{21,5}I₈ представлены в Таблице П.33 приложения.

3.4 Клатраты SrNi₂P₄ и BaNi₂P₄

Экспериментальные величины удельной теплоёмкости C_P клатратов $SrNi_2P_4$ и $BaNi_2P_4$ полученные в настоящем исследовании, приведены в Таблицах 12 и 13, соответственно.

Таблица 12.

T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6
2,07	$5,871 \cdot 10^{-4}$	55,27	0,1093	179,18	0,3858
2,39	$7,072 \cdot 10^{-4}$	57,88	0,1174	182,79	0,3898
2,83	$8,659 \cdot 10^{-4}$	60,49	0,1254	186,39	0,3943
3,30	$1,033 \cdot 10^{-3}$	63,11	0,1335	189,89	0,3974
3,86	$1,177 \cdot 10^{-3}$	65,75	0,1409	190,00	0,3983
4,52	$1,189 \cdot 10^{-3}$	68,39	0,1488	193,37	0,4007
5,25	$1,109 \cdot 10^{-3}$	71,08	0,1576	193,60	0,4025
6,00	$1,075 \cdot 10^{-3}$	73,72	0,1704	197,00	0,4047
6,87	$1,014 \cdot 10^{-3}$	76,35	0,1780	197,19	0,4065
7,88	$1,109 \cdot 10^{-3}$	79,01	0,1859	200,64	0,4104
8,88	$1,245 \cdot 10^{-3}$	81,66	0,1938	200,77	0,4107
9,88	$1,495 \cdot 10^{-3}$	84,32	0,2013	204,50	0,4141
10,86	$1,862 \cdot 10^{-3}$	86,97	0,2082	204,58	0,4139
11,88	$2,365 \cdot 10^{-3}$	89,64	0,2152	208,62	0,4177
12,91	$3,165 \cdot 10^{-3}$	92,74	0,2208	212,74	0,4207
13,96	$4,034 \cdot 10^{-3}$	96,28	0,2317	216,88	0,4232
15,16	$5,263 \cdot 10^{-3}$	99,82	0,2400	221,03	0,4260
16,29	$6,293 \cdot 10^{-3}$	103,38	0,2490	225,19	0,4281
17,41	$7,738 \cdot 10^{-3}$	106,94	0,2584	229,36	0,4309
18,52	$9,312 \cdot 10^{-3}$	110,52	0,2671	233,57	0,4332
19,93	$1,115 \cdot 10^{-2}$	114,10	0,2755	237,77	0,4358

Удельная теплоёмкость клатрата $SrNi_2P_4$ С_Р(T), Дж/(г·К)

			1	F 1	1
1	2	3	4	5	6
21,90	$1,499 \cdot 10^{-2}$	117,69	0,2839	241,95	0,4383
23,91	$1,922 \cdot 10^{-2}$	121,32	0,2921	246,15	0,4399
25,91	$2,377 \cdot 10^{-2}$	124,92	0,2995	250,38	0,4416
27,93	$2,872 \cdot 10^{-2}$	128,53	0,3068	254,71	0,4436
29,95	$3,399 \cdot 10^{-2}$	132,15	0,3132	258,96	0,4454
30,17	$3,341 \cdot 10^{-2}$	135,77	0,3198	263,21	0,4463
32,18	$4,028 \cdot 10^{-2}$	139,39	0,3262	267,45	0,4475
32,55	$3,952 \cdot 10^{-2}$	143,02	0,3320	271,68	0,4494
34,61	$4,843 \cdot 10^{-2}$	146,65	0,3369	275,86	0,4504
34,97	$4,706 \cdot 10^{-2}$	150,28	0,3423	280,02	0,4521
37,43	$5,454 \cdot 10^{-2}$	153,90	0,3487	284,17	0,4532
39,92	$6,208 \cdot 10^{-2}$	157,51	0,3545	288,30	0,4544
42,43	$6,947 \cdot 10^{-2}$	161,12	0,3609	292,42	0,4564
44,97	$7,713 \cdot 10^{-2}$	164,73	0,3667		
47,52	$8,565 \cdot 10^{-2}$	168,35	0,3718		
50,09	$9,334 \cdot 10^{-2}$	171,97	0,3761		
52,68	0,1012	175,58	0,3813		

Продолжение Таблицы 12

Таблица 13.

Удельная теплоёмкость клатрата $BaNi_2P_4$ $C_P(T)$, Дж/(г·К)

T, K	CP	T, K	CP	T, K	CP	T, K	\mathbf{C}_{P}
1	2	3	4	5	6	7	8
2,47	$7,440 \cdot 10^{-4}$	29,94	$3,304 \cdot 10^{-2}$	99,56	0,2217	196,92	0,3618
2,76	$8,486 \cdot 10^{-4}$	32,19	$3,830 \cdot 10^{-2}$	103,12	0,2298	200,57	0,3647
3,33	$1,053 \cdot 10^{-3}$	34,66	$4,553 \cdot 10^{-2}$	106,70	0,2381	204,44	0,3676
3,49	$1,095 \cdot 10^{-3}$	37,14	$5,346 \cdot 10^{-2}$	110,28	0,2459	208,56	0,3711
3,82	$1,114 \cdot 10^{-3}$	39,64	$6,075 \cdot 10^{-2}$	113,86	0,2523	212,68	0,3740
3,95	$1,194 \cdot 10^{-3}$	42,16	$6,809 \cdot 10^{-2}$	117,49	0,2603	216,80	0,3761
4,47	$1,162 \cdot 10^{-3}$	44,70	$7,522 \cdot 10^{-2}$	121,10	0,2670	220,94	0,3790
4,59	$1,196 \cdot 10^{-3}$	47,25	$8,319 \cdot 10^{-2}$	124,71	0,2736	225,09	0,3819
5,17	$1,154 \cdot 10^{-3}$	49,82	$9,062 \cdot 10^{-2}$	128,34	0,2797	229,24	0,3845
5,87	$1,086 \cdot 10^{-3}$	52,41	$9,806 \cdot 10^{-2}$	131,97	0,2850	233,39	0,3859
6,75	$1,036 \cdot 10^{-3}$	55,00	0,1055	135,61	0,2903	237,55	0,3874
7,82	$1,118 \cdot 10^{-3}$	57,61	0,1127	139,24	0,2955	241,71	0,3893
8,97	$1,284 \cdot 10^{-3}$	60,21	0,1200	142,89	0,3008	245,86	0,3922
10,05	$1,581 \cdot 10^{-3}$	62,82	0,1274	146,53	0,3048	250,01	0,3962

1	2	3	4	5	6	7	8
11,68	$2,293 \cdot 10^{-3}$	65,43	0,1347	150,19	0,3093	254,15	0,3980
13,62	$3,801 \cdot 10^{-3}$	68,09	0,1416	153,84	0,3146	258,73	0,3999
15,07	$5,237 \cdot 10^{-3}$	70,74	0,1522	157,50	0,3193	262,85	0,4025
16,24	$6,325 \cdot 10^{-3}$	73,38	0,1577	161,14	0,3246	266,99	0,4025
17,37	$7,794 \cdot 10^{-3}$	76,04	0,1645	164,79	0,3301	271,12	0,4044
18,49	$9,402 \cdot 10^{-3}$	78,69	0,1743	168,43	0,3330	275,23	0,4057
19,93	$1,130 \cdot 10^{-2}$	81,35	0,1817	172,08	0,3370	279,35	0,4094
21,91	$1,522 \cdot 10^{-2}$	84,02	0,1882	175,73	0,3415	283,47	0,4099
23,97	$1,957 \cdot 10^{-2}$	86,68	0,1948	179,38	0,3460	287,60	0,4117
26,03	$2,386 \cdot 10^{-2}$	89,35	0,2004	183,02	0,3505	291,74	0,4136
27,89	$2,813 \cdot 10^{-2}$	92,46	0,2060	186,65	0,3521	295,91	0,4152
28,10	$2,866 \cdot 10^{-2}$	96,00	0,2151	193,27	0,3587	300,15	0,4165

Продолжение Таблицы 13

Измеренные температурные зависимости теплоёмкости для $SrNi_2P_4$ и $BaNi_2P_4$ показаны на Рисунке 3.8. Из графиков можно заметить, что функции $C_P(T)$ превосходят ожидаемые значения Дюлонга-Пти уже при комнатной температуре. Также при низких температурах заметны низкоамплитудные холмы (диффузные максимумы): 3,9 К для $BaNi_2P_4$ и 4,5 К для $SrNi_2P_4$ (Рисунок 3.8, вставка). Значения молярных теплоёмкостей клатратов $SrNi_2P_4$ и $BaNi_2P_4$ представлены в Таблицах П.34 и П.35 в приложении.

Линейная экстраполяция (C_P/T) от (T^2) для обоих клатратов пересекает ось температуры почти в нуле (Рисунок 3.9). Следовательно, вклад свободных носителей заряда в общую теплоёмкость для обоих клатратов пренебрежимо мал в сравнении с другими вкладами, ответственными за вышеуказанные аномалии. Известно, что на температурных зависимостях удельного электрического сопротивления для клатратов VII-го типа аномалий, характерные для магнитных фазовых переходов, не обнаружены [23].

Следовательно, низкотемпературные аномалии теплоёмкости, наблюдаемые для $SrNi_2P_4$ и $BaNi_2P_4$, не могут происходить из-за каких-либо процессов упорядочения магнитных моментов парамагнитных катионов Ni^{2+} . Это подтверждается температурными изменениями энтропии, рассчитанными интегрированием функций (C_P/T) по (T) (Рисунок 3.10). Функция C_P/T экстраполировалась до 0 К в диапазоне 0 – 2,2 К простой квадратичной зависимостью от температуры. Значение энтропии в точке максимума аномалии (4,5 K) для $SrNi_2P_4$ составляет около

Рисунок 3.8. Молярные теплоёмкости $C_P(T)$ клатратов $SrNi_2P_4(1)$ и $BaNi_2P_4(2)$ в области 2 – 300 К

 $0,32 \ Дж \cdot моль^{-1} K^{-1}$, что значительно ниже ожидаемого значения $R \ln 3$ для магнитного упорядочения всех катионов Ni^{2+} . Следовательно, аномалии теплоёмкости имеют не магнитную природу, а должны быть связаны с процессами, происходящими в фононной подсистеме.

Выше было показано, что на теплоёмкость клатратов І-го типа при низких температурах существенно влияют два процесса: 1) отклонение от идеальной упорядоченности атомов в кристаллической структуре, которое даёт линейный стеклоподобный вклад; 2) способность гостевых атомов занимать неэквивалентные позиции внутри менее симметричных ячеек основного каркаса, что влечёт возникновение двухуровневых систем (ДУС) в гостевой подструктуре (см. раздел

70

Рисунок 3.9. Молярные теплоёмкости клатратов $SrNi_2P_4$ (1) и $BaNi_2P_4$ (2), представленные в координатах C_P/T от T^2

3.1). Как отмечалось выше (Рисунок 3.9), экстраполяция линейной зависимости $(C_P/T)(T^2)$ для обоих клатратов проходит через начало координат. Следовательно, первый из вышеупомянутых процессов не проявляется, тогда как последний доминирует. Следовательно, температурную зависимость теплоёмкости клатратов $SrNi_2P_4$ и $BaNi_2P_4$ можно рассматривать в рамках теории Дебая-Эйнштейна, дополнительно учитывая ДУС вклад:

$$C_V = C_{\text{ДУС}}(T) + a_D C_D(\theta_D/T) + a_3 C_E(\theta_{E_1}/T) + a_4 C_E(\theta_{E_2}/T).$$
(3.5)

Рисунок 3.10. Изменение энтропии клатрата SrNi₂P₄ в окрестности низкотемпературной аномалии

Результаты аппроксимации температурных зависимостей теплоёмкости $C_P(T)$ клатратов $SrNi_2P_4$ и $BaNi_2P_4$ с использованием уравнения 3.5 представлены на Рисунке 3.11. Параметры аппроксимации приведены в Таблице 14.

Таблица 14.

Характеристические температуры Дебая (θ_D) и Эйнштейна ($\theta_{E_1}, \theta_{E_2}$), коэффициенты a_i и энергия расщепления основного состояния δ клатратов $SrNi_2P_4$

И	BaN	$i_2 P_4$
---	-----	-----------

Клатрат	a_D	θ_D, K	a_{E_1}	θ_{E_1}, \mathbf{K}	a_{E_2}	θ_{E_2}, \mathbf{K}	δ	b
$SrNi_2P_4$	0,76	500	0,031	71	0,145	148	8,5	0,095
$BaNi_2P_4$	0,76	500	0,052	72	0,17	139	8	0,012

Следует отметить, что в отличие от клатратов I-го типа, которые имеют два вида многогранников, клатраты VII-го типа имеют только один вид многогранника, содержащего гостевые атомы. Тем не менее, для правильного соответствия экспериментальным зависимостям $C_P(T)$ клатратов $SrNi_2P_4$ и $BaNi_2P_4$ мы используем два вклада Эйнштейна. Мы считаем, что две функции Эйнштейна с разными характеристическими температурами, $C_E(\theta_{E_1}/T)$ и $C_E(\theta_{E_2}/T)$, необходимы для учёта

Рисунок 3.11. Температурные зависимости теплоёмкости клатрата $SrNi_2P_4$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V от T (a); C_V/T^3 от T^2 (б); . 1 — экспериментальные данные, 2 — $C_{ДУС}$, $3 - C_D$, 4 — C_{E_1} , 5 — C_{E_2} , 6 — $\sum C_i$

Рисунок 3.12. Температурные зависимости теплоёмкости клатрата $BaNi_2P_4$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V от T (a); C_V/T^3 от T^2 (б). 1 — экспериментальные данные, 2 — $C_{\text{ДУС}}$, $3 - C_D$, $4 - C_{E_1}$, $5 - C_{E_2}$, $6 - \sum C_i$

анизотропии колебаний гостевых атомов. Действительно, анализ данных кристаллической структуры клатрата $SrNi_2P_4$ [23] показывает, что параметр смещения атома вдоль оси *с* вдвое больше, чем вдоль осей *а* и *b*.

3.5 Клатрат EuNi₂P₄

Экспериментальные значения удельной теплоёмкости клатрата $EuNi_2P_4$ представлены в Таблице 15.

Таблица 15.

T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8
2,47	$6,947 \cdot 10^{-3}$	27,89	$3,402 \cdot 10^{-2}$	92,46	0,1942	193,27	0,3453
2,76	$9,205 \cdot 10^{-3}$	28,10	$3,608 \cdot 10^{-2}$	96,00	0,2034	196,92	0,3483
3,33	$1,141 \cdot 10^{-2}$	29,94	$3,862 \cdot 10^{-2}$	99,56	0,2103	200,57	0,3519
3,49	$1,177 \cdot 10^{-2}$	32,19	$4,381 \cdot 10^{-2}$	103,12	0,2177	204,44	0,3542
3,82	$1,352 \cdot 10^{-2}$	34,66	$5,047 \cdot 10^{-2}$	106,70	0,2254	208,56	0,3578
3,95	$1,456 \cdot 10^{-2}$	37,14	$5,734 \cdot 10^{-2}$	110,28	0,2325	212,68	0,3611
4,47	$1,654 \cdot 10^{-2}$	39,64	$6,372 \cdot 10^{-2}$	113,86	0,2396	216,80	0,3646
4,59	$1,764 \cdot 10^{-2}$	40,36	$6,670 \cdot 10^{-2}$	117,49	0,2466	220,94	0,3677
5,17	$1,968 \cdot 10^{-2}$	42,16	$7,025 \cdot 10^{-2}$	121,10	0,2530	225,09	0,3689
5,21	$2,001 \cdot 10^{-2}$	44,70	$7,674 \cdot 10^{-2}$	124,71	0,2599	229,24	0,3753
5,87	$2,293 \cdot 10^{-2}$	47,25	$8,368 \cdot 10^{-2}$	128,34	0,2660	233,39	0,3753
5,88	$2,352 \cdot 10^{-2}$	49,82	$9,085 \cdot 10^{-2}$	131,97	0,2713	237,55	0,3763
6,75	$2,695 \cdot 10^{-2}$	52,41	$9,744 \cdot 10^{-2}$	135,61	0,2764	241,71	0,3776
6,91	$2,820 \cdot 10^{-2}$	55,00	0,1045	139,24	0,2817	245,86	0,3786
7,82	$3,125 \cdot 10^{-2}$	57,61	0,1113	142,89	0,2871	250,01	0,3796
8,97	$3,600 \cdot 10^{-2}$	60,21	0,1183	146,53	0,2916	254,15	0,3819
10,05	$4,379 \cdot 10^{-2}$	62,82	0,1256	150,19	0,2960	258,73	0,3817
11,68	$2,163 \cdot 10^{-2}$	65,43	0,1319	153,84	0,3000	262,85	0,3857
13,62	$1,437 \cdot 10^{-2}$	68,09	0,1383	157,50	0,3051	266,99	0,3883
15,07	$1,436 \cdot 10^{-2}$	70,74	0,1453	161,14	0,3097	271,12	0,3918
16,24	$1,502 \cdot 10^{-2}$	73,38	0,1521	164,79	0,3145	275,23	0,3908
17,37	$1,612 \cdot 10^{-2}$	76,04	0,1586	168,43	0,3191	279,35	0,3944
18,49	$1,754 \cdot 10^{-2}$	78,69	0,1650	172,08	0,3229	283,47	0,3954
19,93	$1,940 \cdot 10^{-2}$	81,35	0,1717	175,73	0,3270	287,60	0,3984
21,91	$2,293 \cdot 10^{-2}$	84,02	0,1777	179,38	0,3308	291,74	0,3995

Удельная теплоёмкость клатрата *EuNi*₂*P*₄ C_P(T), Дж/(г·К)

Γ	пололжение	Таблины	1	5
L	родолжение	таолицы	T	J

1	2	3	4	5	6	7	8
23,97	$2,700 \cdot 10^{-2}$	86,68	0,1835	183,02	0,3346	295,91	0,4033
26,03	$3,128 \cdot 10^{-2}$	89,35	0,1888	186,65	0,3389	300,15	0,4033

Экспериментальная температурная зависимость молярной теплоёмкости $C_P(T)$ для $EuNi_2P_4$ показана на Рисунке 3.13. Значения молярной теплоёмкости клатрата $EuNi_2P_4$ представлены в Таблице П.36 приложения. Ниже 20 К наблюдается фазовый переход, который можно объяснить магнитным упорядочением катионов Eu^{2+} . Предполагая, что регулярная (решёточная) теплоёмкость $EuNi_2P_4$ коррелирует с теплоёмкостью $SrNi_2P_4$ согласно принципу соответствия решёточных теплоёмкостей изоструктурных соединений [89], мы получили аномальную составляющую теплоёмкости $\Delta C(T) EuNi_2P_4$ (вставка на Рисунке 3.13).

Кривая $\Delta C(T)$ имеет сложную форму. Ясно, что резкий максимум вблизи $T_1 = 11$ К обусловлен магнитным фазовым переходом второго рода. Слабо выраженный хвост вблизи $T_3 = 2$ К, очевидно, является низкотемпературным фазовым переходом первого рода. Также в температурном диапазоне $T_1 - T_3$ наблюдается ещё один процесс, влияющий на ход кривой $\Delta C(T)$. Он проявляется в виде размытого горба между T_1 и T_3 .

Максимальное значение энтропии магнитного упорядочения в системе Eu^{2+} с квантовым числом полного углового магнитного момента импульса J = 7/2определяется по формуле: $\Delta S_{max} = R \cdot \ln(2J + 1)$. Здесь R — универсальная газовая постоянная. Интегрируя зависимость $\Delta C(T)/T$, мы рассчитали температурные изменения энтропии $\Delta S(T)$, которая соответствует аномалиям теплоёмкости $\Delta C(T)$ и достигает 20 Дж·моль⁻¹·K⁻¹, что намного выше, чем $R \cdot \ln 8 = 17,28$ Дж·моль⁻¹·K⁻¹.

Это приводит к очевидному выводу: $\Delta C(T)$ и $\Delta S(T)$ характеризуют суммарный эффект трёх процессов. Во-первых, это переход из парамагнитного состояния в антиферромагнитное при T_1 . Во-вторых, фазовый переход первого рода, предположительно структурный, который происходит при дальнейшем уменьшении температуры ниже T_3 . Наконец, существующая аномалия между T_1 и T_3 , которая более отчётливо проявляется на температурной зависимости намагниченности [90]. Для подтверждения предположения о её возможной природе мы провели следующий анализ полученных данных. Прежде всего, мы установили примерный

Рисунок 3.13. Молярная теплоёмкость $C_P(T)$ клатрата $EuNi_2P_4$ (1) в области 2 – 300 К в сравнении с данными (2), полученными из работы [26]. Вставка — разность между теплоёмкостями $EuNi_2P_4$ и $SrNi_2P_4$ $\Delta C(T)$

вид избыточного вклада в теплоёмкость для $EuNi_2P_4$. Это было сделано с помощью следующих рассуждений. Клатрат $EuNi_2P_4$ имеет металлический тип проводимость. Однако, вклад электронов проводимости в теплоёмкость $EuNi_2P_4$ меньше погрешности измерений, и в первом приближении его можно не учитывать вовсе. Поэтому мы выразили теплоёмкость $EuNi_2P_4$ ниже T_1 как сумму трёх слагаемых: 1) вклад $C_1(T) = a_1T^{-2}$, который определяет уменьшение теплоёмкости после пика низкотемпературного фазового перехода первого порядка, 2) вклад $C_2(T) = a_2T^3$ описывает теплоёмкость антиферромагнитного состояния, 3) вклад, который мы обозначили как $C_{exc}(T)$.

Как было показано выше (см. Рисунок 3.8), теплоёмкость изоморфного клатрата $SrNi_2P_4$ имеет слабый максимум около 5 К, который мы связываем с влиянием двухуровневых систем (ДУС). Мы предполагаем что ДУС-аномалия также должна присутствовать и в клатрате $EuNi_2P_4$. Но амплитуда низкотемпературного пологого максимума в теплоёмкости $EuNi_2P_4$ заметно больше, чем у $SrNi_2P_4$, поэтому мы считаем, что он имеет другое происхождение.

Характерные максимумы на температурной зависимости магнитной составляющей теплоёмкости $C_{\text{маг.}}(T)$ соединений содержащих ионы Eu^{2+} и Gd^{3+} , рассмотрены авторами различных работ [91—93]. Орбитальное квантовое число для этих ионов равно нулю, следовательно, расщепление основного состояния кристаллическим электрическим полем не наблюдается. Классический холм Шоттки не встречается в этих соединениях. Холм теплоёмкости $C_{\text{маг.}}(T)$ упорядоченного состояния системы, имеющей (2S+1)-кратное вырождение основного состояния при больших значениях S, возникает в приближении теории среднего поля (MFT) [94]. Для S = 7/2 на кривой $C_{\text{маг.}}(T)$ появляется горб при $T \leq T_N/3$. В МFT-приближении скачок магнитной теплоёмкости $\Delta C_{\text{маг.}}$ при $T = T_N$ определяется следующим образом:

$$C_{\text{маг.}} = 5RS(1+S)/(1+2S+2S^2) = 20,14$$
Дж / моль К. (3.6)

Как видно из Рисунка 3.14 а, эти значения близки к экспериментальным. На Рисунке 3.14 б показан график $C_{\text{маг.}}(T)/T$, который в модели МFT для $T_N = 10,5$ К рассчитывается по следующему уравнению:

$$C_{\text{Mar.}}(t) = 3RS\mu_0^2(t)/(S+1)t[((S+1)t/3B'_S(y_0)) - 1].$$
(3.7)

Здесь $B_s(y) = (1/2S)((2S+1)coth[(2S+1)y/2] - coth(y/2))$ — функция Бриллюэна, S = 7/2 — спин иона, $y_0 = 3\mu_0/(S+1)t$, μ_0 — средний магнитный момент иона в нулевом поле, $t = T/T_N$ — приведённая температура.

Рисунок 3.14 б показывает сходство наблюдаемых и рассчитанных $C_{\text{маг.}}(T)/T$ зависимостей, однако экспериментальные значения лежат немного ниже расчётных при температурах выше T_N из-за магнитных флуктуаций в системе атомных моментов ионов Eu^{2+} .

Расщепление основного состояния ${}^{8}S_{7/2}$ иона Eu^{2+} в нулевом поле имеет вид порядка нескольких десятых Кельвин. Руководствуясь подходом [95], мы считаем, что внутреннее магнитное поле, достигающее значения порядка нескольких тесла на ионах Eu^{2+} , увеличивает расщепление основного состояния до 10 - 20 K, что обусловливает наблюдаемую аномалию теплоёмкости $C_{exc}(T)$ примерно при 6 – 7 K. Мы описали зависимость $C_{exc}(T)$ как функцию типа Шоттки [96]:

$$C_{exc}(T) = b \cdot R \cdot (\delta/T)^2 \frac{e^{-\delta/T}}{\left(1 + b \cdot e^{-\delta/T}\right)^2},$$
(3.8)

здесь *b* представляет собой отношение кратностей вырождения возбужденного и основного состояний, а δ — разность энергии возбужденного и основного состояний. Для клатрата $EuNi_2P_4$ они принимают значения b = 2 и $\delta = 17$ *K*. Решеточная

Рисунок 3.14. Низкотемпературная теплоёмкость клатрата $EuNi_2P_4$ (а). Ромбы — экспериментальные данные; 1 — $C_1(T)$; 2 — $C_2(T)$; 3 — $C_{exc}(T)$; 4 — $\sum C_i$; 5 — $C_{MFT}(T)$. Экспериментальные значения температурной зависимости $C_{\text{маг.}}/T$ (1) и теоретическая кривая в приближении молекулярного поля (2) (б)

составляющая теплоёмкости $C_{lat}(T) EuNi_2P_4$ проанализирована в модели Дебая-Эйнштейна:

$$C_{lat}(T) = a_D C_D \left(\frac{\theta_D}{T}\right) + a_1 C_E \left(\frac{\theta_{E_1}}{T}\right) + a_2 C_E \left(\frac{\theta_{E_2}}{T}\right).$$
(3.9)

Выбор модели обусловлен особенностями кристаллической структуры клатрата VIIго типа. Колебания атомов европия (гости) хорошо описываются в теории Эйнштейна, так как находясь в пустотах матрицы-хозяина Ni-P и обладая слабой связью с её атомами, совершают квазинезависимые колебания. Значительная масса ионов Eu^{2+} и слабая связь с атомами матрицы-хозяина приводят к относительно низким частотам их колебаний. Компонента Дебая описывает согласованные колебания жёстко связанных атомов основной подрешётки. Результаты аппроксимации температурной зависимости теплоёмкости клатрата $EuNi_2P_4$ показаны на Рисунке 3.15. Параметры уравнения 3.9 для клатрата $EuNi_2P_4$ в сравнении с соответствующими данными для $SrNi_2P_4$ приведены в Таблице 16. Из таблицы видно, что наши значения θ_i систематически меньше чем в работе [26], однако различия в теплоёмкости, например, для C_{E_2} при 300 К составляют около 0,3 %, что ниже точности измерений.

Таблица 16.

Параметры уравнения 3.9 описывающие температурные зависимости теплоёмкости $C_V(T)$ клатратов $EuNi_2P_4$ и $SrNi_2P_4$

Соединение	a_D	θ_D, K	a_{E_1}	θ_{E_1}, K	a_{E_2}	θ_{E_2}, K
$EuNi_2P_4$	5,18	505 521 [26]	0,18	66 75 [26]	1,54	140 159 [26]
$SrNi_2P_4$	0,74	500	0,031	71	0,15	148

Состав и структура матрицы-хозяина в клатратах $EuNi_2P_4$ и $SrNi_2P_4$ одинаковы, однако объем элементарной ячейки Еu-содержащего клатрата меньше, и поэтому межатомные расстояния Ni - P короче. Это приводит к более высоким частотам колебаний, что обусловливает более высокую характеристическую температуру θ_D . Поскольку масса иона Eu^{2+} почти вдвое больше массы Sr^{2+} , характеристические температуры θ_{E_1} и θ_{E_2} для Eu-содержащего клатрата ниже, несмотря на меньший объём пустот.

Рисунок 3.15. Температурные зависимости теплоёмкости клатрата $EuNi_2P_4$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V/T^3 от T^2 (a); C_V от T (б). 1 — экспериментальные данные, 2 — $C_{ДУС}$, 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $\sum C_i$

3.6 Клатратоподобное соединение Eu₇Cu₄₄As₂₃

Экспериментальные величины удельной теплоёмкости C_P клатратоподобного соединения $Eu_7Cu_{44}As_{23}$, полученные в настоящем исследовании, приведены в Таблице 17.

Таблица 17.

Удельная теплоёмкость клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ C_P(T),

T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6
2,08	$1,122 \cdot 10^{-3}$	50,12	0,1244	161,11	0,2969
2,43	$1,517 \cdot 10^{-3}$	52,73	0,1333	164,77	0,2988
2,97	$2,263 \cdot 10^{-3}$	55,34	0,1418	168,43	0,3004
3,53	$3,165 \cdot 10^{-3}$	57,96	0,1500	170,54	0,3010
4,14	$4,240 \cdot 10^{-3}$	60,59	0,1579	172,08	0,3017
4,78	$5,346 \cdot 10^{-3}$	63,22	0,1655	175,74	0,3031
5,45	$6,454 \cdot 10^{-3}$	65,90	0,1729	179,41	0,3045
6,15	$7,510 \cdot 10^{-3}$	68,63	0,1801	183,09	0,3058
7,02	$8,785 \cdot 10^{-3}$	71,23	0,1868	191,03	0,3083
8,06	$1,056 \cdot 10^{-2}$	73,83	0,1931	194,63	0,3095
9,10	$1,245 \cdot 10^{-2}$	76,49	0,1992	198,29	0,3106
10,15	$1,470 \cdot 10^{-2}$	79,16	0,2052	202,17	0,3118
11,18	$1,740 \cdot 10^{-2}$	81,83	0,2108	206,28	0,3129
12,20	$2,131 \cdot 10^{-2}$	84,50	0,2162	210,40	0,3140
13,21	$2,538 \cdot 10^{-2}$	87,17	0,2214	214,52	0,3152
14,23	$3,045 \cdot 10^{-2}$	89,85	0,2263	218,64	0,3163
15,34	$3,747 \cdot 10^{-2}$	92,98	0,2317	222,78	0,3175
16,48	$3,302 \cdot 10^{-2}$	96,55	0,2376	226,94	0,3186
17,67	$2,899 \cdot 10^{-2}$	100,13	0,2431	231,09	0,3197
19,39	$2,525 \cdot 10^{-2}$	103,72	0,2484	235,23	0,3209
21,51	$3,129 \cdot 10^{-2}$	107,32	0,2534	239,40	0,3220
23,53	$3,747 \cdot 10^{-2}$	110,93	0,2579	243,58	0,3232
25,57	$4,445 \cdot 10^{-2}$	114,55	0,2620	250,06	0,3248
27,62	$5,170 \cdot 10^{-2}$	118,86	0,2655	254,10	0,3259
28,32	$5,038 \cdot 10^{-2}$	121,11	0,2691	258,17	0,3268
29,70	$5,827 \cdot 10^{-2}$	124,61	0,2725	262,21	0,3280
30,16	$5,590 \cdot 10^{-2}$	128,25	0,2757	266,24	0,3289
31,99	$6,725 \cdot 10^{-2}$	131,88	0,2789	270,23	0,3298
32,41	$6,315 \cdot 10^{-2}$	135,52	0,2817	274,19	0,3305

Дж/(г•К)

1	2	3	4	5	6
34,89	$7,211 \cdot 10^{-2}$	139,17	0,2844	278,17	0,3314
37,38	$8,076 \cdot 10^{-2}$	142,82	0,2869	282,13	0,3321
39,90	$8,607 \cdot 10^{-2}$	146,48	0,2892	286,10	0,3327
42,44	$9,615 \cdot 10^{-2}$	150,14	0,2912	290,04	0,3332
45,01	0,1059	153,80	0,2933	294,04	0,3337
47,56	0,1153	157,45	0,2953	298,11	0,3339

Продолжение Таблицы 17

На Рисунке 3.16 приведён график экспериментальной зависимости молярной теплоёмкости клатрата $Eu_7Cu_{44}As_{23}$. Значения молярной теплоёмкости клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ представлены в Таблице П.37 приложения. На вставке к графику показан резкий максимум при $T_C = 17$ К, который указывает на наличие фазового перехода за счёт упорядочения магнитных моментов катионов Eu^{2+} . Основное состояние ${}^8S_{7/2}$ катиона $Eu^{2+}(f^7)$ имеет нулевой орбитальный момент, поэтому вклад Шоттки для этого соединения не наблюдается.

Рисунок 3.16. Молярная теплоёмкость $C_P(T)$ клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в области 2 – 300 К (1), 2 — данные из работы [27]

Анализ максимума функции $C_P(T)$ при 2 – 20 К позволяет определить характеристику магнитной подсистемы — обменный интеграл *J*. Мы оценивали значение *J* двумя независимыми методами: из значения $T_C = 17,3$ К [61] и из ферромагнитного вклада в полную теплоёмкость $C_P = f(T^{3/2})$ [97].

При температурах ниже 6 К теплоёмкость интерполировалась магнонным вкладом [98]:

$$C_P(T) = 1,362 \cdot T^{3/2} + 0,3226 \cdot T^{5/2}.$$
(3.10)

Мы были вынуждены пренебречь вкладом свободных электронов в теплоёмкость, так как, согласно [27], значения электронной теплоёмкости при 2 – 5 К имеют тот же порядок, что и погрешность измерения. Мы пренебрегали также решёточным вкладом CT^3 , который, как ожидается, будет намного меньше, чем магнитный при температурах ниже 6 К.

Полученная разница между коэффициентами (около 10%), полученными нами и опубликованными в [27], может быть связана с причинами, указанными выше, а также с особенностями происхождения образцов.

Ферромагнитный вклад определялся по уравнению 2.16. Расчёт обменного интеграла проводился по формуле 2.17. Значение z = 6 (число ближайших соседних ионов Eu^{2+}) приводит к самому близкому значению J = 0,27 К. Для сравнения, в ферромагнетике EuB_6 обменный интеграл J оказался равным 0,24 К [25]. Большее значение J для $Eu_7Cu_{44}As_{23}$ согласуется с меньшим межионным расстоянием, 4,086 Å, чем в EuB_6 (4,180 Å).

Чтобы выделить фононный и магнонный вклады в общей теплоёмкости $Eu_7Cu_{44}As_{23}$, мы проанализировали $C_P(T)$ -функцию структурно изоморфного $Sr_7Cu_{44}As_{23}$, не имеющего магнитных ионов. Используя данные $C_P(T)$, опубликованные в [27], мы извлекли электронный вклад в теплоёмкость $C_{3л.}(T) = \gamma T$, где γ — коэффициент Зоммерфельда для $Sr_7Cu_{44}As_{23}$. Оставшаяся часть, представляющая собой фононный вклад $C_{\text{реш.}}(T)$, использовалась для построения температурной зависимости характеристической температуры $\theta_D(T)$ (Рисунок 3.17). На Рисунке 3.17 также показана зависимость $\theta_D(T)$ для $Eu_7Cu_{44}As_{23}$, рассчитанная на основе зависимости $C_V(T)$ по таблице дебаевских функций [99].

Уменьшение характеристической температуры $Eu_7Cu_{44}As_{23}$ при приближении к абсолютному нулю можно объяснить совокупным влиянием магнитных фазовых переходов и наличием низкочастотного фононного максимума. Отметим, что выше 100 К функция $\theta(T)$ проходит почти горизонтально, что доказывает

84

Рисунок 3.17. Характеристическая температура $Eu_7Cu_{44}As_{23}$ (1) и $Sr_7Cu_{44}As_{23}$ (2)

доминирующее влияние дебаевских колебаний атомов основного каркаса в общей теплоёмкости в этой области температур. При $T > T_C$ функции $C_P(T)$ для $Eu_7Cu_{44}As_{23}$ и $Sr_7Cu_{44}As_{23}$ сопоставимы, что позволяет предположить, что фононный вклад в теплоёмкость для этих двух соединений аналогичен во всем температурном диапазоне.

На Рисунке 3.18 показана зависимость (C_V/T^3) от (T^2) для $Eu_7Cu_{44}As_{23}$. Характерными особенностями этой функции являются подъем при низких температурах и диффузный максимум при температурах ниже 20 К. Мы проанализировали эту функцию с точки зрения отношений хозяин-гость. Мы полагаем, что колебания основной матрицы описываются в приближении Дебая, тогда как псевдолокализованные колебания гостевых атомов определяются модами Эйнштейна.

В структуре $Eu_7Cu_{44}As_{23}$ существуют два типа гостевых атомов: атомы Euв асимметричных 20-вершинных ячейках и атомы As в 12-вершинных кубооктаэдрах (См. Рисунок 1.5), для которых характерны свои собственные частоты колебаний. Однако атомы As, имеющие достаточно сильную связь с атомами меди основного каркаса (2,67 Å), относительно лёгкие, что позволяет сделать предположение об их крайне низком вкладе в термодинамические свойства $Eu_7Cu_{44}As_{23}$ в низкотемпературной части изучаемого температурного интервала.

Рост функции $(C_{V_{\text{реш.}}}/T^3) = f(T^2)$ при понижении температуры не может быть аппроксимирован линейной $C_{\text{лин.}}(T) = a \cdot T$ и степенной функцией $C(T) = b \cdot T^x$,

Рисунок 3.18. Температурные зависимости теплоёмкости клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V/T^3 от T^2 (а); C_V от T (б). 1 — экспериментальные данные, 2 — C_D , 3 — C_E , 4 — $C_{\text{ДУС}_1}$, 5 — $C_{\text{ДУС}_2}$, 6 — $\sum C_i$

где x > 1, которые используются для описания неупорядоченности в кристаллической структуре [100]. Аппроксимировать подъём ещё одним вкладом Эйнштейна, который бы имел характеристическую температуру порядка нескольких Кельвинов, было бы нелогичным. Поэтому мы аппроксимировали низкотемпературную часть функции $(C_{V_{\text{pem}}}/T^3) = f(T^2)$ двумя вкладами шотткиевского типа. Один из них, имеющий более высокие частоты, описывает колебания двухуровневых систем (ДУС), возникающих в гостевой подструктуре вследствие отсутствия симметрии окружения гостевого атома [84]. Второй вклад, возникающий при самых низких температурах, отражает незначительное смещение атомов меди и мышьяка со своих позиций. Таким образом, полученное выражение, аппроксимирующее экспериментальные значения теплоёмкости клатратоподобного арсенида $Eu_7Cu_{44}As_{23}$, принимает следующий вид:

$$C_V(T) = \gamma T + C_{\text{ДУС}_1}(T) + C_{\text{ДУС}_2}(T) + a_D C_D(\theta_D/T) + a_E C_E(\theta_E/T).$$
(3.11)

Функцию СДУС_і согласно уравнению 2.11 можно выразить как:

$$C_{\text{ДУС}_{i}}(T) = R \left(\frac{\delta_{i}}{T}\right)^{2} \frac{b_{i} e^{-\frac{\delta_{i}}{T}}}{\left(1 + b_{i} e^{-\frac{\delta_{i}}{T}}\right)^{2}}.$$
(3.12)

Параметры аппроксимации температурных зависимости теплоёмкости $Eu_7Cu_{44}As_{23}$ представлены в Таблице 18. Характеристическая температура Эйнштейна в 96 К лишь немного превышает полученное значения для Eu^{+2} в клатрате І-го типа $Eu_2Ba_6Cu_{16}P_{40}$ (89 К) [55].

Таблица 18.

Параметры аппроксимации для температурной зависимости теплоёмкости $C_V(T)$ клатратоподобного соединения $Eu_7Cu_{44}As_{23}$

	$a_D,$		$a_E,$	γ,				
θ_D, K	Дж·моль $^{-1}$ ·	θ_E, K	Дж·моль $^{-1}$ ·	Дж·моль $^{-1}$ ·	δ_1, K	b_1	δ ₂ , Κ	b_2
	K^{-1}		K^{-1}	K^{-2}				
290	60	96	13,3	0,133	5	0,03	50	2,5

Очевидно, что наибольшее значение a_D из всех коэффициентов в уравнении 3.11 и горизонтальная область функции $\theta_D(T)$ от 100 до 300 К, показанная на Рисунке 3.17, указывают на доминирующий вклад дебаевской составляющей в общую теплоёмкость. Сумма коэффициентов a_i , характеризующих долю i-го вклада в общей теплоёмкости, равна 73,3, что очень близко к общему количеству атомов в соединении $Eu_7Cu_{44}As_{23}$. Удовлетворительное воспроизведение экспериментальной температурной зависимости объёма элементарной ячейки $Eu_7Cu_{44}As_{23}$ в модели Дебая-Эйнштейна [101] с использованием параметров из Таблицы 18 свидетельствует об адекватности проведённого анализа.

3.7 Характеристические термодинамические функции клатратов и клатратоподобных соединений

Интегрирование сглаженных величин молярной изобарной теплоемкости $C_P(T)$ позволило рассчитать температурные изменения энтальпии (ΔH_T^0), энтропии (ΔS_T^0) и свободной энергии Гиббса (ΔG_T^0) клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$. Расчёт производился по формулам:

$$\Delta S_T^0 = \int_0^T \frac{C_P(T)dT}{T};$$
 (3.13)

$$\Delta H_T^0 = \int_0^T C_P(T) dT;$$
 (3.14)

$$\Delta G_T^0 = \Delta H_T^0 - T S_T^0.$$
 (3.15)

Графики температурных зависимостей сглаженных величин теплоёмкости и термодинамических характеристических функций приведены на Рисунках 3.19 – 3.27, а их значения приведены в Таблицах 19 – 27.

Таблица 19.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Sn_{24}P_{19,4}Br_8$

Т, К	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,073	0	0	0
3	0,105	0,036	0,089	-0,018
4	0,349	0,097	0,316	-0,072
5	1,176	0,258	1,079	-0,212

			1 1	1 -
1	2	3	4	5
6	2,637	0,596	2,986	-0,588
7	5,014	1,174	6,812	-1,403
8	8,361	2,054	13,50	-2,935
9	12,86	3,291	24,11	-5,512
10	18,76	4,944	39,92	-9,518
20	141,1	49,61	839,4	-152,8
30	280,6	131,7	2948	-1002
40	397,0	228,1	6337	-2786
50	490,2	326,7	10770	-5563
60	570,9	423,3	16080	-9320
70	641,5	516,7	22140	-14030
80	706,2	606,7	28880	-19650
90	764,0	693,2	36230	-26160
100	815,9	776,5	44130	-33520
120	903,5	933,4	61320	-50680
140	973,2	1078	80090	-70850
160	1031	1212	100100	-93810
180	1081	1337	121300	-119300
200	1121	1453	143300	-147300
220	1149	1561	166000	-177400
240	1169	1662	189100	-209700
260	1184	1756	212700	-243900
280	1196	1844	236500	-280000
298,15	1203	1920	258200	-314100
300	1204	1927	260500	-317700

Продолжение Таблицы 19

Таблица 20.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Sn_{24}P_{19,2}I_8$

Т, К	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,061	0	0	0
3	0,133	0,038	0,097	-0,015
4	0,345	0,103	0,337	-0,075
5	0,691	0,215	0,855	-0,221
6	1,352	0,397	1,877	-0,506
7	3,918	0,790	4,512	-1,016
8	9,336	1,653	11,14	-2,085
9	15,34	3,089	23,48	-4,322

			1 ' '	
1	2	3	4	5
10	21,36	5,009	41,83	-8,263
20	145,2	51,99	874,7	-165,2
30	291,7	136,9	3059	-1048
40	412,2	237,0	6579	-2903
50	505,5	339,1	11170	-5789
60	585,3	438,4	16620	-9686
70	654,2	533,9	22820	-14560
80	714,6	625,3	29660	-20360
90	770,0	712,8	37080	-27060
100	817,2	796,4	45020	-34620
120	896,0	952,8	62150	-52180
140	959,5	1096	80710	-72730
160	1012	1228	100400	-96020
180	1056	1350	121100	-121800
200	1088	1463	142500	-150000
220	1115	1568	164600	-180400
240	1136	1666	187100	-212700
260	1150	1757	209900	-247000
280	1160	1843	233000	-283000
298,15	1160	1916	254100	-317200
300	1160	1923	256200	-320700

Продолжение Таблицы 20

Таблица 21.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Sn_{20}Zn_4P_{20,8}I_8$

T, K	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,080	0	0	0
3	0,191	0,052	0,136	-0,020
4	0,498	0,146	0,480	-0,104
5	1,100	0,318	1,279	-0,312
6	2,172	0,609	2,915	-0,740
7	3,882	1,068	5,942	-1,530
8	6,418	1,746	11,09	-2,875
9	10,09	2,708	19,35	-5,022
10	14,90	4,013	31,84	-8,290
20	106,9	38,19	640,9	-122,9
30	221,6	101,9	2283	-772,2
40	336,7	180,9	5075	-2160

			-	
1	2	3	4	5
50	436,4	266,6	8940	-4390
60	520,1	353,6	13720	-7492
70	594,4	439,4	19300	-11460
80	660,2	523,1	25570	-16280
90	719,4	604,3	32470	-21920
100	776,3	683,1	39940	-28370
120	874,6	833,6	56450	-43580
140	952,5	974,5	74720	-61710
160	1011	1106	94360	-82560
180	1058	1228	115100	-105900
200	1093	1341	136600	-131700
220	1123	1447	158700	-159600
240	1153	1546	181500	-189500
260	1179	1639	204800	-221400
280	1199	1728	228600	-255100
298,15	1199	1803	250400	-287200
300	1199	1810	252600	-290500

Продолжение Таблицы 21

Таблица 22.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Sn_{17}Zn_7P_{22}I_8$

I, K	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,070	0	0	0
3	0,158	0,044	0,114	-0,017
4	0,396	0,120	0,391	-0,087
5	0,879	0,257	1,028	-0,256
6	1,736	0,490	2,336	-0,601
7	3,098	0,856	4,753	-1,236
8	5,184	1,401	8,894	-2,312
9	8,070	2,173	15,52	-4,037
10	12,08	3,226	25,60	-6,659
20	107,8	36,23	625,2	-99,33
30	232,8	102,0	2328	-731,2
40	342,9	183,6	5207	-2139
50	434,2	269,9	9092	-4404
60	519,1	356,6	13860	-7538
70	599,3	442,7	19450	-11540
80	667,9	527,2	25790	-16390

1	2	3	4	5
90	725,5	609,3	32750	-22080
100	774,0	688,3	40250	-28580
120	855,3	836,9	56540	-43890
140	926,2	974,4	74360	-62050
160	988,1	1102	93500	-82860
180	1043	1222	113800	-106100
200	1094	1335	135200	-131700
220	1138	1441	157500	-159500
240	1183	1542	180700	-189400
260	1223	1638	204800	-221200
280	1258	1730	229600	-254900
298,15	1279	1810	252600	-287100
300	1280	1818	255000	-290400

Продолжение Таблицы 22

Таблица 23.

Сглаженные величины изобарной молярной теплоемкости С_Р(T), Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Sn_{18}In_6As_{21,5}I_8$

Т, К	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,226	0	0	0
3	0,487	0,138	0,357	-0,056
4	1,239	0,374	1,220	-0,275
5	2,707	0,799	3,193	-0,804
6	5,396	1,520	7,245	-1,874
7	9,601	2,655	14,74	-3,844
8	16,21	4,354	27,65	-7,185
9	25,65	6,792	48,58	-12,55
10	37,19	10,08	80,00	-20,77
20	178,6	73,32	1159	-307,5
30	316,5	170,7	3635	-1487
40	439,3	278,4	7414	-3722
50	548,8	388,2	12350	-7055
60	645,8	496,9	18330	-11490
70	730,6	602,9	25210	-16990
80	803,6	705,3	32880	-23540
90	864,4	803,6	41220	-31100
100	914,9	897,3	50120	-39620
120	990,1	1071	69170	-59390
140	1041	1228	89480	-82470

Продолжение Таблицы 2

1	2	3	4	5
160	1074	1370	110600	-108500
180	1098	1498	132400	-137300
200	1119	1615	154500	-168400
220	1141	1723	177100	-201800
240	1165	1823	200200	-237300
260	1190	1917	223700	-274800
280	1213	2006	247800	-314000
298,15	1230	2083	269900	-351200
300	1231	2091	272200	-355000

Таблица 24.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $SrNi_2P_4$

Т, К	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,186	0	0	0
3	0,288	0,095	0,237	-0,047
4	0,317	0,182	0,540	-0,189
5	0,326	0,254	0,861	-0,411
6	0,346	0,316	1,198	-0,698
7	0,389	0,373	1,565	-1,043
8	0,457	0,429	1,988	-1,443
9	0,562	0,489	2,498	-1,901
10	0,707	0,555	3,133	-2,421
20	4,481	2,029	29,08	-11,51
30	11,68	5,095	109,9	-43,01
40	20,87	9,650	272,6	-113,4
50	30,76	15,33	530,7	-236,0
60	40,70	21,80	888,0	-420,1
70	51,51	28,87	1349	-672,0
80	61,40	36,39	1914	-997,5
90	70,27	44,13	2572	-1400
100	78,82	51,98	3317	-1880
120	94,22	67,71	5048	-3077
140	106,6	83,18	7056	-4589
160	117,5	98,14	9298	-6404
180	126,6	112,5	11740	-8514
200	134,4	126,3	14350	-10910
220	139,4	139,3	17090	-13560

|--|

1	2	3	4	5
240	143,3	151,6	19910	-16480
260	146,1	163,2	22810	-19630
280	148,6	174,2	25760	-23010
298,15	150,8	183,6	28470	-26260
300	151,1	184,5	28750	-26600

94

Таблица 25.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $BaNi_2P_4$

T, K	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	0,230	0	0	0
3	0,346	0,115	0,288	-0,058
4	0,406	0,224	0,664	-0,230
5	0,405	0,315	1,069	-0,505
6	0,420	0,390	1,482	-0,860
7	0,465	0,459	1,925	-1,286
8	0,560	0,527	2,437	-1,777
9	0,716	0,602	3,075	-2,339
10	0,924	0,688	3,895	-2,980
11	1,154	0,786	4,934	-3,714
12	1,418	0,898	6,221	-4,553
13	1,722	1,023	7,791	-5,510
14	2,065	1,163	9,685	-6,599
15	2,438	1,318	11,94	-7,836
16	2,917	1,491	14,61	-9,235
17	3,450	1,683	17,80	-10,82
18	4,023	1,896	21,53	-12,60
19	4,647	2,130	25,87	-14,61
20	5,296	2,385	30,84	-16,86
30	13,42	5,946	124,4	-53,95
40	23,80	11,16	310,5	-135,8
50	34,52	17,58	602,1	-277,1
60	45,32	24,81	1001	-487,5
70	56,22	32,61	1509	-773,4
80	66,50	40,78	2123	-1140
90	75,51	49,13	2833	-1589
100	84,09	57,53	3631	-2122
120	99,35	74,22	5465	-3441

1	2	3	4	5
140	111,4	90,45	7572	-5091
160	121,7	106,0	9904	-7059
180	130,4	120,9	12430	-9332
200	137,3	135,0	15100	-11890
220	142,7	148,3	17900	-14730
240	147,3	161,0	20800	-17830
260	151,1	172,9	23790	-21170
280	154,6	184,2	26840	-24740
298,15	157,5	194,0	29680	-28180
300	157,7	195,0	29970	-28540

Продолжение Таблицы 25

Таблица 26.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $EuNi_2P_4$

T, K	C_P	ΔS	ΔH	ΔG
1	2	3	4	5
2	2,216	0	0	0
3	3,918	1,207	3,067	-0,554
4	5,735	2,577	7,893	-2,414
5	7,494	4,043	14,51	-5,708
6	9,371	5,573	22,94	-10,50
7	11,13	7,149	33,19	-16,85
7,3	11,55	7,625	36,59	-19,07
7,6	11,99	8,099	40,12	-21,43
7,9	12,47	8,572	43,79	-23,93
8,2	12,94	9,045	47,60	-26,57
8,5	13,41	9,519	51,55	-29,36
8,8	14,13	9,996	55,68	-32,28
9,1	14,87	10,48	60,03	-35,35
9,4	15,61	10,98	64,61	-38,57
9,7	15,71	11,47	69,30	-41,94
10	14,61	11,93	73,85	-45,45
10,3	13,52	12,35	78,07	-49,10
10,6	12,43	12,72	81,97	-52,86
10,9	11,34	13,05	85,53	-56,73
11,2	10,49	13,35	88,81	-60,69
20	7,771	19,18	169,1	-214,4
30	15,37	23,68	284,8	-425,6
40	25,71	29,46	490,2	-688,1

	2	2		
I	Z	3	4	5
50	35,85	36,26	798,0	-1015
60	46,33	43,70	1209	-1413
70	56,39	51,59	1723	-1889
80	66,19	59,76	2335	-2445
90	74,61	68,04	3039	-3084
100	83,06	76,33	3828	-3806
120	98,73	92,87	5646	-5499
140	111,2	109,0	7745	-7520
160	121,2	124,6	10070	-9860
180	130,3	139,4	12590	-12500
200	138,1	153,5	15270	-15440
220	144,2	167,0	18090	-18640
240	148,3	179,7	21020	-22120
260	150,9	191,7	24010	-25830
280	155,0	203,0	27070	-29780
298,15	158,4	212,9	29910	-33560
300	158,6	213,9	30210	-33950

Продолжение Таблицы 26

Таблица 27.

Сглаженные величины изобарной молярной теплоемкости $C_P(T)$, Дж/(моль·К), изменений энтальпии ΔH (Дж/моль), энтропии ΔS (Дж/(моль·К)), энергии Гиббса ΔG (Дж/моль) клатрата $Eu_7Cu_{44}As_{23}$

TV	<u> </u>			
1, N		Δ.5	ΔΠ	ΔG
1	2	3	4	5
2	4,722	0	0	0
3	10,20	2,880	7,459	-1,181
4	17,53	6,771	21,32	-5,760
5	25,01	11,46	42,60	-14,72
6	31,92	16,62	71,06	-28,69
7	38,45	22,03	106,2	-47,97
8	45,92	27,65	148,4	-72,75
9	53,86	33,51	198,3	-103,3
10	63,09	39,66	256,8	-139,8
11	74,24	46,19	325,5	-182,6
12	90,15	53,32	407,7	-232,1
13	107,7	61,21	506,6	-289,2
14	128,7	69,95	624,7	-354,6
15	155,0	79,71	766,5	-429,1
16	151,0	89,60	919,5	-514,0
17	136,9	98,34	1064	-608,3

			-	
1	2	3	4	5
18	124,5	105,8	1194	-710,7
19	114,6	112,3	1314	-820,0
20	121,1	118,3	1432	-935,3
30	246,9	189,8	3272	-2421
40	381,0	278,5	6411	-4730
50	543,5	380,5	11030	-7992
60	684,6	491,9	17170	-12340
70	805,1	606,5	24620	-17830
80	907,3	720,7	33190	-24470
90	993,4	832,6	42690	-32240
100	1065	941,0	52980	-41120
120	1173	1145	75360	-62070
140	1249	1332	99580	-86930
160	1300	1503	125100	-115400
180	1336	1658	151400	-147000
200	1364	1801	178400	-181700
220	1389	1932	206000	-219100
240	1413	2054	234000	-259000
260	1435	2168	262500	-301200
280	1454	2275	291400	-345700
298,15	1464	2367	317800	-387800
300	1466	2376	320500	-392200

Продолжение Таблицы 27

В Таблице 28 приведены стандартные значения (при T = 298,15 K) молярной теплоемкости и характеристических термодинамических функций изучаемых клатратов и клатратоподобных соединений. На рисунке 3.28 видно, что при появлении замещающего атома Zn наблюдается уменьшение энтропии, энтальпии и рост свободной энергии Гиббса. Для энтропии и в большей мере для энтальпии наблюдается минимум. Такой характер зависимостей обусловлен, очевидно, уменьшением количества вакансий в подрешетке матрицы хозяина и процессами нарушения сферической симметрии. Характеристические функции существенно отличаются для клатрата $Sn_{18}In_6As_{21,5}I_8$, что, видимо, обусловлено наличием более тяжелых атомов в матрице-хозяине.

Рисунок 3.19. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Sn_{24}P_{19,4}Br_8$

Рисунок 3.20. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Sn_{24}P_{19,2}I_8$

Рисунок 3.21. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Sn_{20}Zn_4P_{20,8}I_8$

Рисунок 3.22. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Sn_{17}Zn_7P_{22}I_8$

Рисунок 3.23. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Sn_{18}In_6As_{21,5}I_8$

Рисунок 3.24. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $SrNi_2P_4$

100

Рисунок 3.25. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $BaNi_2P_4$

Рисунок 3.26. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $EuNi_2P_4$

Рисунок 3.27. Температурные изменения энтальпии ΔH (1), энтропии ΔS (2) и энергии Гиббса ΔG (3) клатрата $Eu_7Cu_{44}As_{23}$

Таблица 28.

Стандартные величины молярной теплоемкости C_P^0 , изменений энтальпии $\Delta H_{298,15}^0$, энтропии $\Delta S_{298,15}^0$, энергии Гиббса $\Delta G_{298,15}^0$ клатратов при T = 298,15 К

	$C_P^0,$	$\Delta S^{0}_{298,15},$	$\Delta H^{0}_{298,15},$	$\Delta G^{0}_{298,15},$
Соединение	Дж/(моль•К)	Дж/(моль•К)	Дж/моль	Дж/моль
$Sn_{24}P_{19,4}Br_8$	1203	1920	258200	-314100
$Sn_{24}P_{19,2}I_8$	1160	1916	254100	-317200
$Sn_{20}Zn_4P_{20,8}I_8$	1199	1803	250400	-287200
$Sn_{17}Zn_7P_{22}I_8$	1279	1810	252600	-287100
$Sn_{18}In_6As_{21,5}I_8$	1230	2083	269900	-351200
$SrNi_2P_4$	150,8	183,6	28470	-26260
$BaNi_2P_4$	157,5	194,1	29680	-28200
$EuNi_2P_4$	158,4	212,9	29910	-33560
$Eu_7Cu_{44}As_{23}$	1464	2367	317800	-387800

Рисунок 3.28. Сравнение стандартных значений характеристических термодинамических функций клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$

Выводы по Главе 3

В главе представлены полученные в настоящей работе экспериментальные данные о температурных зависимостях теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $BaNi_2P_4$, $SrNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$, а также их анализ в рамках комбинированного подхода Дебая-Эйнштейна. Для некоторых клатратов было проведено сравнение с изоструктурными аналогами.

Структурные особенности клатратов определяют большую часть их тепловых свойств. Общей особенностью всех изученных соединений является наличие слабосвязанных гостевых атомов, колебания которых соответствуют Эйнштейновским модам, а также матрицы-хозяина, состоящей из жёстко связанных атомов, колебания которых соответствуют дебаевским модам.

Особенностью клатратов I-го типа является появление стеклоподобного вклада в теплоёмкость при самых низких температурах из-за нарушений пространственного распределения атомов хозяина, а также из-за наличия вакансий. Второй особенностью является отсутствие сферической симметрии в тетрадекаэдрах и додекаэдрах, что приводит к возникновению возможности занимать гостевыми атомами пространственно близкие, но энергетически неэквивалентные позиции и переходам между ними. Учёт вклада этих процессов даёт более точные результаты при совместном анализе экспериментальных данных теплоёмкости и теплового расширения.

В клатратах VII-го типа малозаметные аномалии теплоёмкости определяются наличием вклада двухуровневых систем (ДУС). Они, также как, в клатратах І-го типа, обусловлены способностью гостевых атомов занимать неэквивалентные близко расположенные позиции внутри матрицы-хозяина, где основное состояние характеризуется высокой степенью вырожденности.

Несмотря на то, что кристаллическая структура клатратов VII-го типа состоит только из одного типа многогранников, при аппроксимации температурной зависимости теплоёмкости были введены в рассмотрение два вклада Эйнштейна по причине явно выраженной анизотропии колебаний гостевых атомов вдоль разных кристаллографических направлений.

При исследовании теплоёмкости $EuNi_2P_4$ выявлены аномалии при температурах 10,42 К, 7,0 К и 2,5 К. Сделан вывод, что при самой высокой из вышеперечисленных температур происходит фазовый переход из парамагнитного в сложное магнитоупорядоченное состояние. Возбуждение двухуровневых систем в гостевой подсистеме является причиной аномалии при умеренно низких температурах с промежуточным значением. Природа фазового перехода, который происходит при самой низкой из вышеперечисленных температур, остаётся неясной.

Низкотемпературная часть теплоёмкости (2 - 20 K) клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ удовлетворительно интерполировалась магнонным вкладом со значением обменного интеграла J = 0,27 K.

Для аппроксимации решёточной теплоёмкости клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ были использованы: электронный вклад, один вклад Эйнштейна, отражающий наличие одного типа гостевого атома, а также два шотткиевских вклада. Первый обусловлен отсутствием симметрии окружения гостевого атома. Второй отражает незначительное смещение атомов меди и мышьяка со своих позиций. Характерно, что именно дебаевский вклад имеет доминирующее влияние на поведение температурной зависимости теплоёмкость соединения $Eu_7Cu_{44}As_{23}$.

Общие выводы и заключение

Основные результаты работы заключаются в следующем.

- Впервые проведено систематическое экспериментальное и теоретическое исследование термодинамических свойств клатратов Sn₂₄P_{19,4}Br₈, Sn₂₄P_{19,2}I₈, Sn₂₀Zn₄P_{20,8}I₈, Sn₁₇Zn₇P₂₂I₈, Sn₁₈In₆As_{21,5}I₈, SrNi₂P₄, BaNi₂P₄, EuNi₂P₄, a также клатратоподобного соединения Eu₇Cu₄₄As₂₃ в области температур 2 – 300 К, получен комплекс важных в научном и практическом отношениях термодинамических и физических характеристик этих соединений;
- Выявлены и проанализированы аномалии теплоёмкости магнитного характера у соединений EuNi₂P₄ и Eu₇Cu₄₄As₂₃, содержащих парамагнитный ион Eu²⁺;
- 3. Выявлено и объяснено влияние состава подрешётки на различные физические свойства клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$;
- 4. Фононная составляющая теплоёмкости клатратов проанализирована в рамках комбинированного подхода Дебая-Эйнштейна;

По результатам настоящего исследования сделаны следующие выводы:

- 1. Температурные зависимости теплоёмкости клатратов І-го типа удовлетворительно описываются в рамках модели Дебая-Эйнштейна с использованием двух вкладов Эйнштейна, отражающих наличие двух типов гостевых атомов, которые располагаются в додекаэдрах и тетрадекаэдрах соответственно.
- Введение стеклоподобного вклада при анализе теплоёмкости клатратов І-го типа обусловлено нарушениями пространственного распределения атомов хозяина, а также наличием вакансий. Вклад двухуровневых систем обусловлен нарушением сферической симметрии окружения гостевого атома.
- Особенностью клатратов VII-го типа является наличие анизотропии колебаний решётки вдоль разных кристаллографических направлений. Это обусловливает введение двух компонент Эйнштейна в фононном спектре и наличие вклада двухуровневых систем.

- 4. Для соединений, в структуре которых присутствует парамагнитный ион Eu²⁺, характерен диффузный максимум на температурной зависимости теплоёмкости, который отражает переход из парамагнитного в магнитоупорядоченное состояние. Также в соединениях EuNi₂P₄ и Eu₇Cu₄₄As₂₃ отсутствует вклад Шоттки, так как основное состояние катиона Eu²⁺(f⁷) имеет нулевой орбитальный момент.
- Величины характеристических дебаевских и эйнштейновских температур, которые были получены в результате анализа фононной теплоёмкости изучаемых клатратов, отнесены к колебаниям атомов матрицы-хозяина и атомов-гостей соответственно.
- 6. На низкотемпературной зависимости теплоёмкости клатрата EuNi₂P₄ выявлены две отчётливые аномалии. Первая характеризует переход из парамагнитного состояния в антиферромагнитное при 11 К. Вторая — фазовый переход первого рода, предположительно структурный, при температурах ниже 3 К.

В заключение автор сердечно благодарит своего руководителя, доктора физико-математических наук, профессора Владимира Васильевича Новикова за предоставление темы диссертации и руководство её выполнения, а также за одинаково живое участие как в работе над диссертацией, так и в личных вопросах.

Искреннюю благодарность автор приносит кандидату физико-математических наук Николаю Васильевичу Митрошенкову за помощь, оказанную им на отдельных этапах выполнения работы, а также за предоставление экспериментальных данных параметров решётки изучаемых образцов.

Автор выражает искреннюю признательность доктору химических наук, профессору Андрею Владимировичу Шевелькову за руководство синтезом объектов исследования и помощь при выполнении диссертационной работы.

Автор благодарен сотрудникам лаборатории химического факультета МГУ им. М. В. Ломоносова за изготовление, проверку качества и предоставление образцов клатратов и клатратоподобного соединения для исследования термодинамических свойств.

Автор благодарит кандидата физико-математических наук, доцента Александра Вячеславовича Матовникова за помощь, оказанную им на этапах проведении эксперимента по измерению теплоёмкости и обработке полученных результатов исследования.

Список литературы

- 1. Beekman M., Morelli D. T., Nolas G. S. Better thermoelectrics through glass-like crystals // Nature Materials. 2015. Vol. 14, № 12. P. 1182–1185.
- Shevelkov A. V., Kovnir K. A. Zintl Clathrates // Structure and Bonding. 2011. № 139. P. 97—142.
- Kirsanova M. A., Shevelkov A. V. Clathrates and semiclathrates of Type-I: Crystal structure and superstructures // Zeitschrift fur Kristallographie. 2013. Vol. 228, № 5. P. 215–227.
- 4. Preparation and thermoelectric properties of A^{II}₈B^{III}₁₆B^{IV}₃₀ clathrate compounds / V. L. Kuznetsov [et al.] // Journal of Applied Physics. 2000. Vol. 87, № 11. P. 7871–7875.
- Gallmeier J., Schäfer H., Weiss A. Eine Käfigstruktur als gemeinsames Bauprinzip der Verbindungen K₈E₄₆ (E = Si, Ge, Sn) // Zeitschrift für Naturforschung B. 1969. Jg. 24, № 6. S. 665–671.
- 6. Terry M., Harald B., Lidong C. Thermoelectrics: Direct Solar Thermal Energy Conversion // MRS Bulletin. 2008. Vol. 33, № 4. P. 366–368.
- Rowe D. M. Thermoelectrics handbook: macro to nano. Boca Raton : CRC Press, 2006. 954 p.
- Shevelkov A. V. Chemical aspects of the design of thermoelectric materials // Russian Chemical Reviews. 2008. Vol. 77, № 1. P. 1–19.
- 9. Synthesis of group IV clathrates for photovoltaics / A. D. Martinez [et al.] // IEEE Journal of Photovoltaics. 2013. Vol. 3, № 4. P. 1305–1310.
- Silicon Clathrate Films for Photovoltaic Applications / T. Fix [et al.] // Journal of Physical Chemistry C. 2020. Vol. 124, № 28. P. 14972—14977.
- A new family of multifunctional silicon clathrates: Optoelectronic and thermoelectric applications / Y. Liu [et al.] // Journal of Applied Physics. 2017. Vol. 121, № 8. P. 085107-1-085107-9.
- Yamanaka S. Silicon clathrates and carbon analogs: High pressure synthesis, structure, and superconductivity // Dalton Transactions. 2010. Vol. 39, № 8. P. 1901–1915.
- Warrier P., Koh C. A. Silicon clathrates for lithium ion batteries: A perspective // Applied Physics Reviews. 2016. Vol. 3, № 4. P. 040805-1—040805-7.
- 14. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications / G. S. Nolas [et al.] // Applied Physics Letters. 1998. Vol. 73, № 2. P. 178–180.
- Structural, magnetic, thermal, and transport properties of X₈Ga₁₆Ge₃₀ (X=Eu, Sr, Ba) single crystals / B. C. Sales [et al.] // Physical Review B. 2001. Vol. 63, № 21. P. 245113-1 —245113-8.
- Cohn J. L., Nolas G. S. Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors // Physical Review Letters. 1999. Vol. 82, № 4. P. 779–782.
- Novel compounds Sn₁₀In₁₄P₂₂I₈ and Sn₁₄In₁₀P_{21.2}I₈ with clathrate I structure: Synthesis and crystal and electronic structure / M. M. Shatruk [et al.] // Journal of Solid State Chemistry. 2001. Vol. 161, № 2. P. 233–242.
- High temperature thermoelectric transport properties of double-atom-filled clathrate compounds Yb_xBa_{8-x}Ga₁₆Ge₃₀ / X. Tang [et al.] // Journal of Applied Physics. 2008. Vol. 104, № 1. P. 1–7.
- Homo- and Heterovalent Substitutions in the New Clathrates I Si₃₀P₁₆Te_{8-x}Se_x and Si_{30+x}P_{16-x}Te_{8-x}Br_x: Synthesis, Crystal Structure, and Thermoelectric Properties. / N. S. Abramchuk [et al.] // Inorganic Chemistry. 2012. Vol. 51, № 21. P. 11396—11405.
- Quantitative advances in the Zintl-Klemm formalism / G. J. Miller [et al.] // Structure and Bonding. 2011. Vol. 139. P. 1–55.
- Sn_{20.5}□_{3.5}As₂₂I₈: A largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity / J. V. Zaikina [et al.] // Chemistry A European Journal. 2007. Vol. 13, № 18. P. 5090–5099.
- Synthesis, crystal structure, and thermoelectric properties of clathrates in the Sn-In-As-I system / E. A. Kelm [et al.] // Zeitschrift fur Anorganische und Allgemeine Chemie. 2011. Vol. 637, № 13. P. 2059–2067.
- Twisted Kelvin Cells and Truncated Octahedral Cages in the Crystal Structures of Unconventional Clathrates, AM₂P₄ (A = Sr, Ba; M = Cu, Ni) / J.-a. Dolyniuk [et al.] // Chemistry of Materials. 2015. Vol. 4. P. 1–9.

- 24. Rogl G., Rogl P. Skutterudites, a most promising group of thermoelectric materials // Current Opinion in Green and Sustainable Chemistry. 2017. Vol. 4. P. 50–57.
- 25. Sirota N. N., Novikov V. V., Sidorov A. A. Heat capacity, root-mean-square displacements of atoms and thermal expansion coefficient of europium hexaboride // Physics of the Solid State. 2000. Vol. 42, № 2. P. 199–200.
- 26. EuNi₂P₄, the first magnetic unconventional clathrate prepared: Via a mechanochemically assisted route / I. V. Plokhikh [et al.] // Inorganic Chemistry Frontiers. 2020. Vol. 7, № 5. P. 1115—1126.
- 27. Two New Arsenides, Eu₇Cu₄₄As₂₃ and Sr₇Cu₄₄As₂₃, With a New Filled Variety of the BaHg₁₁ Structure / D. O. Charkin [et al.] // Inorganic Chemistry. 2014. Vol. 5. P. 1–12.
- Nolas G. S. The Physics and Chemistry of Inorganic Clathrates. Springer, 2014. Vol. 199. 341 p.
- Zintl E. InterraetallIsche Verbindungen // Angewandte Chemie. 1939. Jg. 52, № 1.
 S. 1–48.
- Christensen M., Johnsen S., Iversen B. B. Thermoelectric clathrates of type I // Dalton Transactions. 2010. Vol. 39, № 4. P. 978–992.
- Keimes V., Johrendt D., Mewis A. BaNi₂P₄: Dimorphie durch Peierls-Verzerrung? // Zeitschrift fur Anorganische und Allgemeine Chemie. 1994. Jg. 621. S. 925–930.
- 32. First-principles study of type-I and type-VIII Ba₈Ga₁₆Sn₃₀ clathrates / Y. Kono [et al.] // Journal of Applied Physics. 2010. Vol. 107, № 12. P. 123720-1—123720-6.
- Lin Q., Corbett J. D. Li_{14.7}Mg_{36.8}Cu_{21.5}Ga₆₆: An Intermetallic Representative of a Type IV Clathrate // Inorganic Chemistry. 2008. Vol. 47, № 23. P. 10825–10831.
- Clathrate thermoelectrics / J. A. Dolyniuk [et al.] // Materials Science and Engineering R: Reports. 2016. Vol. 108. P. 1–46.
- 35. Crystal Growth Conditions of Types I and II Na-Si Clathrates by Evaporation of Na from a Na-Si-Sn Solution / H. Morito [et al.] // Crystal Growth and Design. 2018. Vol. 18, № 1. P. 351–355.

- 36. Cationic clathrate I Si_{46-x}P_xTe_y (6.6(1) ≤ y ≤ 7.5(1), x ≤ 2y): Crystal structure, homogeneity range, and physical properties / J. V. Zaikina [et al.] // Inorganic Chemistry. 2009. Vol. 48, № 8. P. 3720–3730.
- 37. A guest-free germanium clathrate / A. M. Guloy [et al.] // Nature. 2006. Vol. 443, № 7109. P. 320—323.
- High pressure synthesis of an iodine doped silicon clathrate compound / E. Reny [et al.] // Chemical Communications. 2000. № 24. P. 2505–2506.
- 39. Effects of the order-disorder phase transition on the physical properties of A₈Sn_{44□2} (A = Rb, Cs) / A. Kaltzoglou [et al.] // Journal of Materials Chemistry. 2008. Vol. 18, № 46. P. 5630–5637.
- 40. Kaltzoglou A., Hoffmann S. D., Fässler T. F. Order-disorder phase transition in type-I clathrate Cs₈Sn₄₄□₂ // European Journal of Inorganic Chemistry. 2007. № 26. P. 4162–4167.
- 41. First Tin Pnictide Halides Sn₂₄P_{19.3}I₈ and Sn₂₄As_{19.3}I₈: Synthesis and the Clathrate-I Type of the Crystal Structure / M. M. Shatruk [et al.] // Inorganic Chemistry. 1999. Vol. 38, № 15. P. 3455—3457.
- 42. Unusually High Chemical Compressibility of Normally Rigid Type-I Clathrate Framework: Synthesis and Structural Study of Sn₂₄P_{19.3}Br_xI_{8-x} Solid Solution, the Prospective Thermoelectric Material / K. A. Kovnir [et al.] // Inorganic Chemistry. 2004. Vol. 43, № 10. P. 3230–3236.
- Anomalously low thermal conductivity and thermoelectric properties of new cationic clathrates in the Sn-In-As-I system / A. V. Shevelkov [et al.] // Semicon-ductors. 2011. Vol. 45, № 11. P. 1399–1403.
- 44. Kovnir K. A., Shevelkov A. V. Semiconducting clathrates: synthesis, structure and properties // Russian Chemical Reviews. 2004. Vol. 73, № 9. P. 923–938.
- Johrendt D., Mewis A. BaPdP, Ba₂PdP₃ und BaPd₂P₄-Zintl-Verbindungen oder intermetallische Phasen? // Journal of Alloys and Compounds. 1994. Jg. 205, № 1–2. S. 183–189.
- Dunner J., Mewis A. BaCu₂P₄-ein neues ternäres polyphosphid // Journal of the Less-Common Metals. 1991. Jg. 167. S. 127–134.

- 47. Specific features of the heat capacity and thermal expansion of icosahedral holmium boride HoB₅₀ at temperatures of 2 – 300 K / V. V. Novikov [et al.] // Journal of Alloys and Compounds. 2017. Vol. 724. P. 782–786.
- 48. Ban Z., Sikirica M. The crystal structure of ternary silicides ThM₂Si₂ (M = Cr, Mn, Fe, Co, Ni and Cu) // Acta Crystallographica. 1964. Vol. 18, № 4. P. 594–599.
- 49. Nenghabi E. N., Myles C. W. First-principles calculations of the vibrational and thermal properties of the type-I clathrates Ba₈Ga₁₆Si_xGe_{30-x} and Sr₈Ga₁₆Si_xGe_{30-x} // Physical Review B Condensed Matter and Materials Physics. 2008. Vol. 78, № 19. P. 1–9.
- 50. Structural, transport, magnetic, and thermal properties of Eu₈Ga₁₆Ge₃₀ / S. Paschen [et al.] // Physical Review B. 2001. Vol. 64, № 21. P. 214404-1—214404-11.
- Structure, thermal, and transport properties of the clathrates Sr₈Zn₈Ge₃₈, Sr₈Ga₁₆Ge₃₀, and Ba₈Ga₁₆Si₃₀ / L. Qiu [et al.] // Physical Review B - Condensed Matter and Materials Physics. 2004. Vol. 70, № 3. P. 1–8.
- 52. Thermal and lattice dynamical properties of Na₈Si₄₆ clathrate / L. Qiu [et al.] // Physical Review B Condensed Matter and Materials Physics. 2001. Vol. 64, № 2. P. 243031–243036.
- 53. Stefanoski S., Martin J., Nolas G. S. Low temperature transport properties and heat capacity of single-crystal Na₈Si₄₆ // Journal of Physics Condensed Matter. 2010. Vol. 22, № 48. P. 1–5.
- 54. First-principles calculations for thermodynamic properties of type-I silicon clathrate intercalated by sodium atoms / W. Zhang [et al.] // Modern Physics Letters B. 2015. Vol. 29, № 27. P. 1550166.
- 55. Introducing a magnetic guest to a tetrel-free clathrate: Synthesis, structure, and properties of Eu_xBa_{8-x}Cu₁₆P₃₀ (0 ≤x ≤1.5) / K. Kovnir [et al.] // Inorganic Chemistry. 2011. Vol. 50, № 20. P. 10387–10396.
- 56. Thermal expansion of thermoelectric type-I-clathrates / M. Falmbigl [et al.] // Journal of Applied Physics. 2010. Vol. 108, № 4. P. 1–10.
- 57. Impedance of Sn₂₄P_{19.3}Br_xI_{8-x} semiconducting clathrates / A. V. Yakimchuk [et al.] // Low Temperature Physics. 2007. Vol. 33, № 2–3. P. 369–373.

- 58. Crystal structure, thermoelectric and magnetic properties of the type-I clathrate solid solutions Sn₂₄P_{19.3(2)}Br_xI_{8-x} (0 ≤ x ≤ 8) and Sn₂₄P_{19.3(2)}Cl_yI_{8-y} (y ≤ 0.8) / J. V. Zaikina [et al.] // Solid State Sciences. 2007. Vol. 9, № 8. P. 664–671.
- Blackman M. The theory of the specific heat of solids // Reports on Progress in Physics. 1941. Vol. 8, № 11. P. 11-30.
- Павлов И. В., Хохлов А. Физика твердого тела / под ред. Стереотип. 3-е изд.
 М. : Высшая школа, 2000. 497 с.
- 61. Tari A. The Specific Heat of Matter at Low Temperatures. Dhahran : Imperial College Press, 2003. 343 p.
- Carlin R. L. Magnetochemistry. Springer Science & Business Media, 1986. Vol. 53. 339 p.
- 63. Леванов А. В., Антипенко Э. Е. Определение термодинамических свойств статистическими методами. Классический идеальный газ. М. : Московский государсвтенный университет им. М.В. Ломоносова, 2006. 44 с.
- 64. Elliot R. Magnetic Properties of Rare Earth Metals. Plenum Publishing Corporation, 1972. 430 p.
- Anderson P. W., Halperin B. I., Varma C. M. Anomalous low-temperature thermal properties of glasses and spin glasses // Philosophical Magazine. 1972. Vol. 25, № 1. P. 1–9.
- 66. Phillips W. A. Tunneling states in amorphous solids // Journal of Low Temperature Physics. 1972. Vol. 7, № 3–4. P. 351–360.
- Parshin D. A. Soft potential model and universal properties of glasses // Physica Scripta. 1993. Vol. T49A. P. 180–185.
- Mukherjee G. D., Bansal C., Chatterjee A. Thermal expansion study of ordered and disordered Fe₃Al: An effective approach for the determination of vibrational entropy // Physical Review Letters. 1996. Vol. 76, № 11. P. 1876–1879.
- А. Ж. Н. Особенности фононной и магнитной подсистем редкоземельных боридов типа RB₅₀ по данным калориметрического и рентгеновского исследований в области 2 – 300 К : дис. ... канд. физ.-мат. наук. Брянск, 2018. 149 с.

- Морозов А. В. Температурные зависимости теплоёмкости тетраборидов редкоземельных элементов в интервале 2 – 300 К : дис. ... канд. физ.-мат. наук. Брянск, 2013. 153 с.
- Митрошенков Н. В. Рентгеновское исследование динамики кристаллической решётки тетраборидов редкоземельных элементов при температурах 5 – 300 К : дис. ... канд. физ.-мат. наук. Брянск, 2016. 180 с.
- Авдащенко Д. В. Термодинамические характеристики боридов редкоземельных элементов Rb₆₆ в интервале 2 300 К : дис. ... канд. физ.-мат. наук. Брянск, 2012. 153 с.
- Низкотемпературный калориметр: Руководство по эксплуатации. "Термакс". М., 2005. 19 с.
- 74. Термодинамические исследования при низких температурах. Измерение теплоёмкости твёрдых тел и жидкостей между 12 и 300 К / П. Г. Стрелков [и др.] // Журнал физической химии. 1954. Т. 28, № 3. С. 459—473.
- 75. Novel compounds Sn₂₀Zn₄P_{22-v}I₈ (v = 1.2), Sn₁₇Zn₇P₂₂I₈, and Sn₁₇Zn₇P₂₂Br₈: Synthesis, properties, and special features of their clathrate-like crystal structures / K. A. Kovnir [et al.] // Solid State Sciences. 2005. Vol. 7, № 8. P. 957–968.
- Tadano T., Gohda Y., Shinji T. Impact of Rattlers on Thermal Conductivity of a Thermoelectric Clathrate: A First-Principles Study // Physical Review Letters. 2015. Vol. 114. P. 1–6.
- Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba₈Ge_{40+x}Ni_{6-x} / H. Euchner [et al.] // Physical Review B Condensed Matter and Materials Physics. 2012. Vol. 86, № 22. P. 1–9.
- 78. Off-center rattling and anisotropic expansion of type-I clathrates studied by Raman scattering / Y. Takasu [et al.] // Physical Review Letters. 2008. Vol. 100, № 16. P. 6–9.
- 79. Cage-size control of guest vibration and thermal conductivity in Sr₈Ga₁₆Si_{30-x}Ge_x / K. Suekuni [et al.] // Physical Review B Condensed Matter and Materials Physics. 2007. Vol. 75, № 19. P. 20–22.
- 80. Heat capacity study on anharmonicity in Ae₈Ga₁₆Ge₃₀ (Ae = Sr and Ba) / J. Xu [et al.] // Journal of Electronic Materials. 2011. Vol. 40, № 5. P. 879–883.

- Combined X-ray and neutron diffraction study of vacancies and disorder in the dimorphic clathrate Ba₈Ga₁₆Sn₃₀ of type I and VIII / S. Christensen [et al.] // Dalton Transactions. 2013. Vol. 42, № 41. P. 14766–14775.
- Ramirez A. P., Kowach G. R. Large Low Temperature Specific Heat in the Negative Thermal Expansion Compound ZrW₂O₈ // Physical Review Letters. 1998. Vol. 80, № 22. P. 4903–4906.
- 83. Structural irregularities and peculiarities of low-temperature thermal properties of Sn₂₄P_{19.4}Br₈ clathrate / K. S. Pilipenko [et al.] // Dalton Transactions. 2017. Vol. 46, № 28. P. 9110–9117.
- Negative thermal expansion and low-temperature heat capacity anomalies of Ge₃₁P₁₅Se₈ semiclathrate / V. V. Novikov [et al.] // Journal of Alloys and Compounds. 2016. Vol. 684. P. 564—568.
- 85. Synthesis, Structure, and Transport Properties of Type-I Derived Clathrate Ge_{46-x}P_xSe_{8-y} (x = 15.4(1); y = 0–2.65) with Diverse Host-Guest Bonding / M. A. Kirsanova [et al.] // Inorganic Chemistry. 2013. Vol. 52, № 1. P. 577–588.
- Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn₂₄P_{19.3}I₈ / V. V. Novikov [et al.] // Journal of Alloys and Compounds. 2012. Vol. 520. P. 174–179.
- 87. Dynamics of the crystal structure of tin-based type-I clathrates with different degrees of disorder in their cationic frameworks / K. S. Pilipenko [et al.] // Physical Chemistry Chemical Physics. 2017. Vol. 19, № 40. P. 27725–27730.
- Effect of the cation sublattice composition of tin-based type-I clathrates on their low-temperature thermal properties / K. S. Pilipenko [et al.] // Dalton Transactions. 2018. Vol. 47, № 32. P. 11219–11225.
- 89. Stout J. W., Catalano E. Heat capacity of zinc fluoride from 11 to 300°K. Thermodynamic functions of zinc fluoride. Entropy and heat capacity associated with the antiferromagnetic ordering of manganous fluoride, ferrous fluoride, cobaltous fluoride, and nickelous fluoride // The Journal of Chemical Physics. 1955. Vol. 23, № 11. P. 2013–2022.
- 90. The specific features of phononic and magnetic subsystems of type-VII clathrate EuNi₂P₄ / K. S. Pilipenko [et al.] // Physical Chemistry Chemical Physics. 2020. Vol. 22, № 32. P. 18025–18034.

- 91. Helical antiferromagnetic ordering in EuNi_{1.95}As₂ single crystals / N. S. Sangeetha [et al.] // Physical Review B. 2019. Vol. 100, № 9. P. 20–22.
- 92. Structure and magnetic order of EuB₆ / S. Süllow [et al.] // Physical Review B Condensed Matter and Materials Physics. 1998. Vol. 57, № 10. P. 5860—5869.
- 93. Fishman R. S., Liu S. H. Expansion in 1/z for the transition temperature and specific heat of ferromagnets // Physical Review B. 1989. Vol. 40, № 16. P. 11028—11036.
- Johnston D. C. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets // Physical Review B Condensed Matter and Materials Physics. 2015. Vol. 91, № 6. P. 1–28.
- 95. Blanco J. A., Gignoux D., Schmitt D. Specific heat in some gadolinium compounds.
 II. Theoretical model // Physical Review B. 1991. Vol. 43, № 16. P. 13145—13151.
- 96. Structural, thermal, magnetic, and electronic transport properties of the LaNi₂(Ge_{1-x}P_x)₂ system / R. J. Goetsch [et al.] // Physical Review B Condensed Matter and Materials Physics. 2012. Vol. 85, № 5. P. 1–20.
- 97. Kittel C. Introduction to Solid State Physics, 8th edition. John Wiley & Sons, 2004.703 p.
- 98. Dietrich O. W., Henderson A. J., Meyer H. Spin-wave analysis of specific heat and magnetization in EuO and EuS // Physical Review B. 1975. Vol. 12, № 7. P. 2844–2855.
- 99. Сирота Н. Термодинамика и статистическая физика. Минск : Вышэйшая школа, 1969. 471 с.
- 100. Negative thermal expansion and anomalies of heat capacity of LuB₅₀ at low temperatures / V. V. Novikov [et al.] // Dalton Transactions. 2015. Vol. 44, № 36. P. 15865—15871.
- Low-temperature thermodynamic and magnetic properties of clathrate-like arsenide Eu₇Cu₄₄As₂₃ / K. S. Pilipenko [et al.] // Journal of Magnetism and Magnetic Materials. 2020. Vol. 498. P. 166–165.

ПРИЛОЖЕНИЕ

П.1. Молярная теплоёмкость клатратов и клатратоподобных соединений

Таблица П.29.

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
3,07	0,1072	16,53	84,54	57,94	562,3	129,30	946,9	225,90	1158
3,90	0,1798	17,22	93,70	60,56	582,4	133,86	961,6	230,82	1166
4,47	0,3392	17,92	105,7	63,18	602,3	138,42	976,9	235,45	1169
5,05	0,6486	18,94	120,3	65,82	619,9	142,98	989,5	238,34	1171
5,63	1,057	20,29	141,8	68,46	637,8	147,56	1000	241,00	1173
6,22	2,027	21,79	167,2	71,15	654,7	152,15	1016	244,73	1175
6,83	3,045	23,40	192,5	73,81	671,2	156,74	1029	249,91	1180
7,45	4,313	25,04	218,7	76,47	688,3	161,34	1040	253,87	1184
8,08	6,088	26,70	244,0	79,13	705,2	165,94	1053	259,41	1184
8,69	8,359	28,38	263,9	81,79	720,3	170,55	1064	262,78	1188
9,31	11,30	30,26	283,9	84,46	736,7	175,17	1073	267,79	1188
9,94	14,50	32,22	311,4	87,12	753,3	179,79	1082	272,80	1195
10,58	17,98	34,72	346,2	89,80	767,8	184,42	1094	265,55	1191
11,22	22,87	37,24	378,7	93,34	789,0	189,04	1107	270,56	1191
11,86	28,61	39,78	406,5	97,77	811,1	193,67	1117	275,64	1195
12,50	34,31	42,35	432,9	102,23	832,9	198,31	1122	279,43	1197
13,17	40,91	44,93	452,2	106,70	854,5	202,96	1129	283,99	1199
13,83	48,54	47,51	483,0	111,19	875,1	207,61	1136	288,44	1202
14,49	57,16	50,10	505,8	115,69	894,7	212,24	1147	292,93	1202
15,16	65,38	52,71	520,8	120,20	912,8	216,88	1155	297,41	1202
15,84	74,53	55,32	542,1	124,73	928,9	221,48	1154	301,83	1206

Молярная теплоёмкость клатрата $Sn_{24}P_{19,4}Br_8 ext{ C}_{ ext{P}}(ext{T})$, Дж/(моль·К)

Таблица П.30.

Молярная теплоёмкость клатрата $Sn_{24}P_{19,2}I_8$ С_Р(Т), Дж/(моль·К)

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
2,47	0,0736	11,54	30,42	34,58	355,9	112,40	870,2	189,17	1072
2,62	0,0308	11,61	31,37	36,29	376,6	115,09	880,9	191,91	1077
3,25	0,1406	12,06	34,96	39,25	416,6	117,79	890,7	194,66	1079
3,50	0,2102	12,15	39,69	41,00	431,1	120,50	901,1	197,41	1083
3,75	0,2468	12,30	37,43	42,74	449,7	123,21	910,6	200,15	1088

117

1	2	3	4	5	6	7	8	9	10
3,99	0,3141	12,67	41,92	44,48	468,3	125,92	918,3	203,35	1094
4,23	0,3922	12,83	46,71	46,64	484,1	128,63	927,3	207,01	1097
4,48	0,4600	12,98	44,20	49,23	506,6	131,35	937,4	210,68	1106
4,73	0,4957	13,30	48,27	51,82	532,3	134,10	946,5	214,35	1111
4,77	0,5198	13,49	54,45	54,43	547,9	136,83	954,5	218,01	1117
4,98	0,5140	13,67	51,31	57,05	568,3	139,56	963,6	221,68	1116
5,23	0,6648	14,17	61,99	59,67	588,8	142,29	968,8	225,35	1121
5,47	0,8768	14,35	60,18	62,29	608,0	145,03	972,8	229,00	1126
5,57	0,9348	14,85	71,07	64,92	626,9	147,77	981,1	232,65	1134
5,72	1,018	15,05	69,50	67,55	644,6	150,50	991,0	236,32	1135
5,89	1,070	15,54	79,28	70,19	663,1	153,25	995,4	239,98	1137
5,97	1,159	15,75	78,06	72,84	684,5	155,98	1002	243,62	1140
6,18	1,032	16,46	88,18	75,49	692,4	158,72	1009	247,28	1142
6,34	1,787	17,17	98,37	78,18	708,2	161,46	1018	250,93	1146
6,57	1,756	17,87	110,3	80,84	723,8	164,62	1026	254,57	1152
7,06	2,426	18,75	123,0	83,51	739,5	167,19	1034	258,21	1153
7,56	2,973	19,79	139,9	86,18	752,7	167,22	1031	261,84	1154
7,99	6,099	20,95	159,3	88,85	767,2	169,80	1034	265,45	1156
8,41	10,16	22,18	178,9	90,51	775,0	172,68	1043	269,03	1157
8,94	14,24	23,41	198,7	93,00	785,0	174,91	1047	272,63	1158
9,55	18,16	24,66	217,7	93,65	790,8	175,43	1048	276,20	1158
10,14	20,58	25,91	236,5	96,31	806,3	178,18	1054	279,75	1159
10,19	22,51	27,16	257,4	98,97	819,1	179,98	1058	283,28	1161
10,84	27,46	28,43	274,2	101,65	829,3	180,92	1057	286,81	1162
10,85	24,81	29,71	290,6	104,33	840,4	183,67	1062	290,33	1164
10,92	25,69	31,18	310,1	107,01	851,2	186,42	1067	293,83	1167
11,49	33,15	32,87	333,2	109,70	859,6	187,41	1072	297,36	1166

Таблица П.31.

```
Молярная теплоёмкость клатрата Sn_{20}Zn_4P_{20,8}I_8 C<sub>P</sub>(T), Дж/(моль·К)
```

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	\mathbf{C}_{P}
1	2	3	4	5	6	7	8	9	10
2,47	0,0966	17,70	78,6	63,15	550,2	132,95	931,6	207,58	1104
3,16	0,1967	17,98	82,47	65,85	571,7	136,59	947,1	211,68	1111
3,67	0,3063	19,08	94,5	68,59	589,3	137,35	952	215,84	1126
4,22	0,4385	20,45	110	71,16	610,4	140,26	958,3	219,99	1121
4,78	0,6232	22,03	130,1	73,74	631,8	141,27	962,8	224,17	1129
5,38	0,9063	23,68	146,9	76,40	644,3	144,92	972,2	228,33	1132
5,99	1,425	25,33	165,8	79,05	657,6	148,57	983,8	232,52	1147
6,59	1,981	26,99	184,7	81,73	672	152,23	992,7	236,71	1147
7,21	2,783	28,70	205,7	82,28	681,7	155,88	1004	240,98	1151

1	2	3	4	5	6	7	8	9	10
7,83	4,035	33,21	255,6	84,94	690,8	159,54	1016	245,24	1160
8,46	5,522	34,70	279,2	87,62	705	163,20	1020	249,46	1168
9,09	7,459	36,47	293,8	90,28	730,4	166,86	1031	253,72	1175
9,72	9,932	38,19	319,4	93,39	737	170,51	1038	257,98	1182
10,37	12,97	39,90	337,2	96,95	763,1	174,17	1052	262,42	1185
11,02	16,55	41,63	358,1	100,51	779,9	177,84	1059	266,73	1193
11,67	21,25	43,36	378,6	104,08	802,2	181,50	1058	271,01	1189
12,37	26,36	45,14	397,7	107,65	821,9	185,15	1073	275,30	1200
13,05	31,78	47,33	415,3	111,24	838,6	188,81	1079	279,52	1196
13,73	36,08	49,95	443,7	114,84	859,3	192,47	1086	280,95	1196
14,42	42,95	52,59	472,5	118,44	876,6	195,69	1094	285,35	1205
15,11	48,97	55,22	493,5	122,05	892,4	196,13	1084	289,53	1209
15,81	56,27	57,85	511,1	125,67	905,2	199,60	1093	293,62	1213
16,50	66,15	60,50	525,3	129,29	918	203,47	1098	297,66	1216

Продолжение Таблицы П.31

Таблица П.32.

Молярная теплоёмкость клатрата $Sn_{17}Zn_7P_{22}I_8$ С_Р(Т), Дж/(моль·К)

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
2,48	0,0839	20,19	108,5	66,03	569,9	147,75	953,4	241,95	1187
3,16	0,1615	21,71	126,8	68,72	592,9	151,38	965,5	245,79	1198
3,67	0,2524	23,32	147,3	71,32	613,8	155,01	977,5	248,77	1203
4,24	0,3601	24,95	168,1	73,92	636,7	158,67	988,4	252,75	1210
4,83	0,489	26,60	189,4	76,58	653,3	162,34	996,3	256,85	1218
5,46	0,7485	28,27	213,2	79,24	670,5	164,63	1004	260,92	1224
6,10	1,201	29,96	234,5	81,91	688	168,19	1017	264,96	1234
6,76	1,689	30,08	235,3	84,58	703,2	171,83	1022	268,94	1241
7,42	2,434	31,66	253,7	87,26	718,1	175,45	1030	272,86	1248
8,08	3,596	33,26	273	89,93	732,4	179,07	1042	276,76	1259
8,74	4,964	33,40	274,1	93,06	751	182,69	1050	280,61	1267
9,41	6,733	34,97	294	96,63	767,3	186,30	1060	284,48	1272
10,08	9,009	36,68	313,8	100,86	785,2	189,91	1071	288,31	1274
10,75	11,87	38,40	332,2	104,39	801,7	193,51	1080	292,00	1278
11,43	15,24	40,14	349,8	107,96	815,1	197,10	1088	295,38	1278
12,11	19,19	41,88	365,3	111,54	828,8	200,68	1097	297,00	1279
12,82	24,85	43,63	381,6	115,14	843	204,45	1107	300,10	1280
13,51	30,34	45,38	398,7	118,74	855,1	208,51	1115		
14,22	36,66	47,54	418,4	122,34	869,8	214,28	1131		
14,93	43,43	50,15	439,6	125,96	883,6	218,60	1138		
15,64	50,54	52,76	459,9	129,58	891	222,41	1143		
16,35	58,74	55,38	482,7	133,20	904,7	226,58	1155		

Продолжение Таблицы П.32

1	2	3	4	5	6	7	8	9	10
17,06	67,7	58,01	505,7	136,84	917,9	230,75	1161		
17,78	77,37	60,65	528,6	140,47	930,4	234,51	1169		
18,82	90,12	63,34	547	144,11	942,3	238,15	1180		

Таблица П.33.

Молярная теплоёмкость клатрата $Sn_{18}In_6As_{21,5}I_8$ C_P(T), Дж/(моль·К)

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
2,56	0,2857	17,64	144,5	56,13	617	128,31	1023	210,54	1130
3,32	0,5878	18,36	155,1	58,77	642,1	131,93	1031	214,58	1134
3,89	0,8953	19,43	170,8	61,42	666,4	135,55	1039	218,72	1138
4,48	1,355	20,97	193,2	64,08	689,8	139,18	1047	222,83	1143
5,10	1,848	22,60	216,4	66,80	712,8	142,80	1053	226,99	1148
5,73	2,898	24,25	239,8	69,49	734,7	146,43	1060	231,17	1153
6,34	4,255	25,94	263,2	72,12	755,2	150,05	1065	235,30	1158
6,97	5,987	26,46	270,3	74,75	774,9	153,65	1071	239,52	1163
7,59	8,765	27,63	286,3	77,43	794,1	157,24	1075	243,69	1169
8,20	12,13	28,28	295	80,11	812,4	160,82	1080	247,96	1174
8,83	16,32	29,33	309,1	82,79	830	164,40	1084	252,17	1180
9,46	21,46	30,41	323,3	85,47	846,7	167,97	1088	256,33	1185
10,10	29,21	31,12	332,6	88,16	862,7	171,54	1092	258,47	1188
10,75	39,32	32,75	353,8	90,84	877,8	175,10	1096	260,65	1191
11,39	49,43	33,03	357,4	93,98	894,7	178,66	1099	264,83	1197
12,05	59,63	35,32	386,3	97,57	912,7	182,23	1102	267,61	1200
12,74	70,3	37,87	417,8	101,14	929,5	185,77	1106	271,82	1205
13,42	80,82	40,46	448,8	104,76	945,2	189,32	1109	275,94	1210
14,11	91,31	43,06	479	108,35	959,8	194,81	1114	280,14	1215
14,80	101,8	45,67	508,4	111,95	973,3	196,33	1116	284,24	1220
15,50	112,4	48,27	536,8	115,58	985,8	198,80	1118	288,27	1224
16,20	123,1	50,87	564,2	119,19	997,4	202,51	1122	292,29	1227
16,92	133,8	53,50	591,1	124,27	1012	206,51	1126	296,23	1230

Таблица П.34.

Молярная теплоёмкость клатрата $SrNi_2P_4$ C_P(T), Дж/(моль·К)

T, K	CP	T, K	CP	T, K	C _P	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
2,07	0,1931	23,91	6,321	71,08	51,83	143,02	109,2	204,58	136,14
2,39	0,2326	25,91	7,819	73,72	56,05	146,65	110,8	208,62	137,4
2,83	0,2848	27,93	9,446	76,35	58,56	150,28	112,6	212,74	138,36

1	2	3	4	5	6	7	8	9	10
3,30	0,3397	29,95	11,18	79,01	61,16	153,90	114,7	216,88	139,2
3,86	0,3871	30,17	10,99	81,66	63,73	157,51	116,6	221,03	140,11
4,52	0,391	32,18	13,25	84,32	66,2	161,12	118,7	225,19	140,8
5,25	0,3649	32,55	13	86,97	68,48	164,73	120,6	229,36	141,72
6,00	0,3535	34,61	15,93	89,64	70,77	168,35	122,3	233,57	142,49
6,87	0,3334	34,97	15,48	92,74	72,61	171,97	123,7	237,77	143,33
7,88	0,3647	37,43	17,94	96,28	76,2	175,58	125,4	241,95	144,17
8,88	0,4094	39,92	20,42	99,82	78,94	179,18	126,9	246,15	144,7
9,88	0,4916	42,43	22,85	103,38	81,89	182,79	128,2	250,38	145,24
10,86	0,6123	44,97	25,37	106,94	84,99	186,39	129,7	254,71	145,9
11,88	0,778	47,52	28,17	110,52	87,85	189,89	130,7	258,96	146,5
12,91	1,041	50,09	30,7	114,10	90,6	190,00	131	263,21	146,8
13,96	1,327	52,68	33,27	117,69	93,37	193,37	131,8	267,45	147,2
15,16	1,731	55,27	35,96	121,32	96,06	193,60	132,4	271,68	147,8
16,29	2,07	57,88	38,61	124,92	98,5	197,00	133,1	275,86	148,15
17,41	2,545	60,49	41,24	128,53	100,9	197,19	133,7	280,02	148,7
18,52	3,063	63,11	43,9	132,15	103	200,64	135	284,17	149,06
19,93	3,668	65,75	46,36	135,77	105,2	200,77	135,1	288,30	149,45
21,90	4,931	68,39	48,95	139,39	107,3	204,50	136,2	292,42	150,13

Продолжение Таблицы П.34

Таблица П.35.

Молярная теплоёмкость клатрата $BaNi_2P_4$ C_P(T), Дж/(моль·К)

T, K	CP	T, K	CP	T, K	\mathbf{C}_{P}	T, K	CP
1	2	3	4	5	6	7	8
2,47	0,2817	29,94	12,51	99,56	83,94	196,92	137,0
2,76	0,3213	32,19	14,50	103,12	87,01	200,57	138,1
3,33	0,3987	34,66	17,24	106,70	90,15	204,44	139,2
3,49	0,4146	37,14	20,24	110,28	93,09	208,56	140,5
3,82	0,4217	39,64	23,00	113,86	95,53	212,68	141,6
3,95	0,4521	42,16	25,78	117,49	98,55	216,80	142,4
4,47	0,4401	44,70	28,48	121,10	101,1	220,94	143,5
4,59	0,4530	47,25	31,50	124,71	103,6	225,09	144,6
5,17	0,4368	49,82	34,31	128,34	105,9	229,24	145,6
5,87	0,4111	52,41	37,13	131,97	107,9	233,39	146,1
6,75	0,3922	55,00	39,93	135,61	109,9	237,55	146,7
7,82	0,4233	57,61	42,66	139,24	111,9	241,71	147,4
8,97	0,4860	60,21	45,44	142,89	113,9	245,86	148,5
10,05	0,5987	62,82	48,23	146,53	115,4	250,01	150,0
11,68	0,8683	65,43	51,01	150,19	117,1	254,15	150,7
13,62	1,439	68,09	53,60	153,84	119,1	258,73	151,4
15,07	1,983	70,74	57,61	157,50	120,9	262,85	152,4

Продолжение	Таблицы	П.35
-------------	---------	------

1	2	3	4	5	6	7	8
16,24	2,395	73,38	59,71	161,14	122,9	266,99	152,4
17,37	2,951	76,04	62,29	164,79	125,0	271,12	153,1
18,49	3,560	78,69	66,01	168,43	126,1	275,23	153,6
19,93	4,277	81,35	68,81	172,08	127,6	279,35	155,0
21,91	5,764	84,02	71,25	175,73	129,3	283,47	155,2
23,97	7,408	86,68	73,76	179,38	131,0	287,60	155,9
26,03	9,035	89,35	75,86	183,02	132,7	291,74	156,6
27,89	10,65	92,46	78,01	186,65	133,3	295,91	157,2
28,10	10,85	96,00	81,43	193,27	135,8	300,15	157,7

Таблица П.36.

Молярная теплоёмкость клатрата $EuNi_2P_4$ C_P(T), Дж/(моль·К)

T, K	\mathbf{C}_{P}	T, K	\mathbf{C}_{P}	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8
2,47	2,732	27,89	13,38	92,46	76,36	193,27	135,8
2,76	3,62	28,10	14,19	96,00	80	196,92	137
3,33	4,486	29,94	15,19	99,56	82,69	200,57	138,4
3,49	4,629	32,19	17,23	103,12	85,61	204,44	139,3
3,82	5,317	34,66	19,85	106,70	88,64	208,56	140,7
3,95	5,728	37,14	22,55	110,28	91,42	212,68	142
4,47	6,506	39,64	25,06	113,86	94,24	216,80	143,4
4,59	6,939	40,36	26,23	117,49	96,99	220,94	144,6
5,17	7,74	42,16	27,63	121,10	99,52	225,09	145,1
5,21	7,87	44,70	30,18	124,71	102,2	229,24	147,6
5,87	9,018	47,25	32,91	128,34	104,6	233,39	147,6
5,88	9,25	49,82	35,73	131,97	106,7	237,55	148
6,75	10,60	52,41	38,32	135,61	108,7	241,71	148,5
6,91	11,09	55,00	41,10	139,24	110,8	245,86	148,9
7,82	12,29	57,61	43,76	142,89	112,9	250,01	149,3
8,97	14,16	60,21	46,52	146,53	114,7	254,15	150,2
10,05	17,22	62,82	49,41	150,19	116,4	258,73	150,1
11,68	8,507	65,43	51,86	153,84	118	262,85	151,7
13,62	5,651	68,09	54,39	157,50	120	266,99	152,7
15,07	5,647	70,74	57,14	161,14	121,8	271,12	154,1
16,24	5,907	73,38	59,80	164,79	123,7	275,23	153,7
17,37	6,340	76,04	62,36	168,43	125,5	279,35	155,1
18,49	6,898	78,69	64,89	172,08	127	283,47	155,5
19,93	7,630	81,35	67,51	175,73	128,6	287,60	156,7
21,91	9,017	84,02	69,90	179,38	130,1	291,74	157,1
23,97	10,62	86,68	72,17	183,02	131,6	295,91	158,6
26,03	12,30	89,35	74,26	186,65	133,3	300,15	158,6

Таблица П.37.

Молярная теплоёмкость клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ C_P(T),

T, K	CP	T, K	CP	T, K	CP	T, K	CP	T, K	CP
1	2	3	4	5	6	7	8	9	10
2,08	4,918	23,53	164,3	68,63	789,9	135,52	1235	214,52	1382
2,43	6,651	25,57	194,9	71,23	818,9	139,17	1247	218,64	1387
2,97	9,923	27,62	226,7	73,83	846,5	142,82	1258	222,78	1392
3,53	13,88	28,32	220,9	76,49	873,6	146,48	1268	226,94	1397
4,14	18,59	29,70	255,5	79,16	899,6	150,14	1277	231,09	1402
4,78	23,44	30,16	245,1	81,83	924,4	153,80	1286	235,23	1407
5,45	28,3	31,99	294,9	84,50	948,1	157,45	1295	239,40	1412
6,15	32,93	32,41	276,9	87,17	970,8	161,11	1302	243,58	1417
7,02	38,52	34,89	316,2	89,85	992,5	164,77	1310	250,06	1424
8,06	46,32	37,38	354,1	92,98	1016	168,43	1317	254,10	1429
9,10	54,6	39,90	377,4	96,55	1042	170,54	1320	258,17	1433
10,15	64,44	42,44	421,6	100,13	1066	172,08	1323	262,21	1438
11,18	76,31	45,01	464,5	103,72	1089	175,74	1329	266,24	1442
12,20	93,46	47,56	505,7	107,32	1111	179,41	1335	270,23	1446
13,21	111,3	50,12	545,5	110,93	1131	183,09	1341	274,19	1449
14,23	133,5	52,73	584,3	114,55	1149	191,03	1352	278,17	1453
15,34	164,3	55,34	621,7	118,86	1164	194,63	1357	282,13	1456
16,48	144,8	57,96	657,7	121,11	1180	198,29	1362	286,10	1459
17,67	127,1	60,59	692,4	124,61	1195	202,17	1367	290,04	1461
19,39	110,7	63,22	725,8	128,25	1209	206,28	1372	294,04	1463
21,51	137,2	65,90	758,3	131,88	1223	210,40	1377	298,11	1464

Дж/(моль·К)