На правах рукописи

Пилипенко Кирилл Сергеевич

Термодинамические свойства клатратов и клатратоподобных соединений в температурной области 2 – 300 К

Специальность 1.3.8. Физика конденсированного состояния

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

AB

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Брянский государственный университет имени академика И.Г. Петровского».

Научный руководитель:	кандидат физико-математических наук Митрошенков Николай Васильевич
Научный консультант:	доктор физико-математических наук, профессор Новиков Владимир Васильевич
Официальные оппоненты:	Марков Олег Иванович, доктор физико-математических наук, доцент, ФГБОУ ВО «Орловский государственный университет име- ни И.С. Тургенева», заведующий кафедрой экспериментальной и теоретической физики
	Петров Николай Иванович, кандидат физико-математических наук, ФГБОУ ВО «Российский химико-технологический универ- ситет имени Д.И. Менделеева», доцент кафедры физики
Ведущая организация:	Федеральное государственное автономное образовательное учреждение высшего образования «Национальный иссле- довательский технологический университет «МИСИС»

Защита состоится «11» октября 2023 г. в 14 часов 30 минут на заседании диссертационного совета 24.2.331.06, созданного на базе ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» по адресу: 248000, г. Калуга, ул. Баженова, д. 2, МГТУ им. Н.Э. Баумана, Калужский филиал.

С диссертацией можно ознакомиться в библиотеке МГТУ им. Н.Э. Баумана и на сайтах https://bmstu.ru/, https://kf.bmstu.ru/.

Автореферат разослан «___» ____ 2023 года.

Ученый секретарь диссертационного совета 24.2.331.06 канд. техн. наук, доцент

Munt

Лоскутов Сергей Александрович

Общая характеристика работы

В настоящее время очень остро стоит вопрос поиска возобновляемых источников энергии. Так называемые неорганические клатраты и клатратоподобные соединения являются весьма многообещающими материалами для решения этих насущных проблем. Интерес к ним обусловлен большим разнообразием их свойств и всё более широкими возможностями практического применения. Одним из перспективных направлений исследований клатратов является разработка разного рода термоэлектрических преобразователей, принцип работы которых основан на эффекте Зеебека, а также на эффекте Пельтье. Основной проблемой при разработке термоэлектрических приборов является повышение их эффективности, и главную роль здесь играет создание термоэлектрического материала с высокой добротностью. Такой материал должен обладать высокой электропроводностью и плохо проводить тепло.

Актуальность темы. Термин «клатрат» происходит от латинского clathratus и означает «обрешечённый, закрытый решёткой». Этот термин, введённый Пауэллом в 1948 году, относится к гидратам и аналогичным веществам, трёхмерная структура которых имеет матрицу-хозяина, обеспечивающую высокие значения электропроводности, а также атомов-гостей, которые удерживаются силами Ван-дер-Ваальса или слабым электростатическим взаимодействием в полостях хозяина. Известно несколько типов структур клатрата, однако, несмотря на их многообразие, общей особенностью клатратов является неспособность структуры хозяина сохранять стабильность в отсутствие атомов-гостей.

Некоторые клатраты и клатратоподобные соединения могут быть использованы в приборах для конверсии отработанного тепла, для преобразования солнечной энергии, в криогенном охлаждении, в фотогальванике, в оптоэлектронике, а также в литий-ионных аккумуляторах.

Изучение термодинамических свойств клатратов и клатратоподобных соединений при низких температурах является **актуальным**, так как именно в этом диапазоне температур возможно определение их физических параметров, таких как коэффициент Зоммерфельда, характеристические температуры Дебая и Эйнштейна, необходимых для анализа и прогнозирования свойств клатратов в широком температурном интервале, в том числе и при повышенных температурах.

Некоторые из йодосодержащих клатратов І-го типа уже были исследованы ранее. Например, детальное рассмотрение кристаллической структуры клатрата $Sn_{24}P_{19.3}I_8$ показывает, что при низком содержании индия образуется «сверх-структура».

Неорганические клатраты VII-го типа могут существовать в двух структурных формах. Одна из таких форм — так называемый «правильный» клатрат, например, $BaNi_2P_4$, тогда как $SrNi_2P_4$, $BaCu_2P_4$ и $EuNi_2P_4$ представляют собой своеобразные искажённые клатраты VII-го типа. В кристаллической структуре обоих типов есть только один тип 24-вершинных многогранников. В $BaNi_2P_4$ он имеет вид усечённого кубооктаэдра, а в остальных трёх клатратах имеет вид искажённого, закрученного многогранника, называемого *полиэдром Кельвина*.

Клатраты и клатратоподобные соединения, содержащие парамагнитные ионы, обладают уникальной фононной подсистемой. Было обнаружено, что атом европия имеет наибольший параметр атомного смещения с ярко выраженной анизотропией. Это связано с тем, что полость, в которой находится атом европия, имеет удлинённую форму вдоль направления «*c*» элементарной ячейки. Наличие редкоземельного иона Eu^{2+} и парамагнитного иона Ni^{2+} позволяет ожидать проявления аномальных магнитных свойств соединений $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ при низких температурах. Ранее был сделан вывод, что система магнитных моментов ионов Eu^{2+} в клатрате $EuNi_2P_4$ переходит в антиферромагнитное состояние при температуре ниже $T_N = 15$ К. В клатратоподобном соединении $Eu_7Cu_{44}As_{23}$ происходит переход в ферромагнитное упорядоченное состояние ($T_C = 17,3$ K).

В совокупности эти свойства делают клатраты и клатратоподобные соединения интересными объектами для изучения их термоэлектрического потенциала и оптимизации термоэлектрической добротности за счет легирования.

Степень разработанности темы. Использование совместного анализа калориметрических данных теплоёмкости и теплового расширения по методу Дебая-Эйнштейна хорошо себя показывает при исследовании множества поликристаллических образцов.

Термодинамические свойства клатрата $Sn_{24}P_{19.3}I_8$ уже были исследованы ранее. Однако имеются доказательства того, что фононный спектр клатратов является более сложным, чем предполагалось. В частности, не был учтён вклад неупорядоченности в катионном каркасе в общую теплоёмкость, который проявляется при самых низких температурах.

Также были исследованы термодинамические свойства клатрата $EuNi_2P_4$. Была получена температурная зависимость теплоёмкости этого клатрата, на которой отслеживались три аномалии, свидетельствующие о фазовых превращениях, одна из которых характеризует переход в магнитоупорядоченное состояние. Однако полученная зависимость требует более детального рассмотрения.

Целью настоящей работы является экспериментальное выявление закономерностей температурных изменений теплоёмкости клатратов различных типов, а также клатратоподобных соединений при низких температурах, установление природы особенностей исследуемых температурных зависимостей.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Экспериментально определить величины теплоёмкости поликристаллических образцов клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ при температурах 2 – 300 К; выявить аномалии температурных зависимостей.

- Выделить и проанализировать фононный, электронный и магнитный вклады, а также вклад двухуровневых систем в теплоёмкость изучаемых клатратов и клатратоподобного соединения; сопоставить характеристики фононного спектра и динамики решётки исследуемых клатратов.
- Проанализировать экспериментальные зависимости тепловых свойств клатратов в приближении Дебая-Эйнштейна, установить закономерности изменений параметров модели в зависимости от структуры и состава клатратов.
- 4. Проанализировать влияние состава и кристаллической структуры клатратов на их термодинамические свойства.

Научная новизна:

- 1. Впервые экспериментально и теоретически исследованы температурные зависимости теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в области 2-300 К.
- Выявлены и проанализированы особенности изменения термодинамических характеристик клатратов и клатратоподобных соединений в широкой низкотемпературной области, включающей интервалы фазовых превращений.
- Впервые установлено наличие аномалий температурных зависимостей теплоёмкости изучаемых клатратов, а также клатратоподобного соединения, установлена природа этих аномалий (магнитные, структурные превращения, неупорядоченность кристаллической структуры, двухуровневые системы, ангармонизм).

Теоретическая и практическая значимость работы заключается в следующем:

- полученные в настоящей работе термодинамические характеристики клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ при температурах 2 300 К могут быть использованы в различных физикохимических расчётах, войдут в справочную литературу;
- получивший в ходе исследования дальнейшее развитие подход для анализа калориметрических данных, основанный на модели Дебая-Эйнштейна с учётом ангармонизма и влияния сферически несимметричного окружения гостевых атомов, позволяющий адекватно определять характеристики фононных подсистем веществ, найдёт применение при проведении исследований термодинамических свойств веществ различных классов при низких температурах;
- температурные зависимости теплоёмкости клатратов, изученные в настоящей работе, будут использованы при разработке приборов на основе клатратов и клатратоподобных соединений.

Методология и методы исследования. При выполнении диссертационной работы выполнены измерения теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ в интервале температур 2 – 300 К. Метод измерения — абсолютный адиабатический с периодическим нагревом. Анализ полученных температурных зависимостей выполнен с привлечением модели Дебая-Эйнштейна, теории двухуровневых систем, с учётом влияния неупорядоченности структуры клатратов и ангармонизма колебаний решётки.

Основные положения, выносимые на защиту:

- 1. Экспериментальные температурные зависимости теплоёмкости $C_P(T)$ клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в области температур 2 – 300 К.
- Результаты анализа температурных зависимостей теплоёмкости изучаемых веществ в модели Дебая-Эйнштейна, величины характеристических температур Дебая, Эйнштейна, выявленные закономерности изменений параметров модели с изменением состава подсистемы атомов-гостей, а также матрицы-хозяина клатратов.
- 3. Выявленные аномалии зависимости $C_P(T)$ клатратов, установленная природа этих аномалий (колебания двухуровневых систем, ангармонизм, неупорядоченность кристаллической структуры).

Достоверность полученных результатов обеспечивается высоким качеством образцов, применением современных методов исследования и анализа, соответствием ряда полученных физических характеристик настоящей работы данным исследований зарубежных и отечественных авторов.

Апробация работы. Основные результаты работы докладывались на следующих конференциях:

- 1. VIII Международная научная конференция «Актуальные проблемы физики твёрдого тела -2018» (Беларусь, г. Минск, 2018 г.);
- 2. «3-rd International Conference on Applied Physics» (London, UK, 2018);
- 3. XVII Межгосударственная конференция «Термоэлектрики и их применения» (ISCTA 2021) Санкт-Петербург, Россия;
- 4. Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2022» (Россия, г. Москва, 2022 г.)

Личный вклад. Соискатель принимал непосредственное участие в проведении эксперимента по измерению теплоёмкости изучаемых клатратов, в проведении анализа калориметрических данных. Лично соискателем выполнены расчёты термодинамических характеристик клатратов, проанализированы выявленные закономерности, сформулированы основные результаты и выводы работы, представлены результаты работы на научных конференциях.

Публикации. Основные результаты по теме диссертации изложены в 10 научных изданиях, 6 из которых изданы в периодических научных журналах, индексируемых Web of Science и Scopus, 4 — в тезисах докладов.

Объем и структура работы. Диссертация состоит из введения, трёх глав, заключения и приложения. Полный объем диссертации составляет 123 страницы текста, включая 51 рисунок и 37 таблиц. Список литературы содержит 101 наименование.

Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится краткий обзор научной литературы по физическим свойствам клатратов, формулируется цель, ставятся задачи работы, излагается научная новизна, практическая значимость и апробация проведённого исследования.

Первая глава посвящена описанию свойств известных неорганических клатратов и клатратоподобных соединений. В ней рассмотрены структурные особенности, температурные зависимости теплоёмкости, термодинамические, электрические, термоэлектрические и магнитные свойства клатратов I, II, VII-го типа и некоторых клатратоподобных соединений.

Основой ячеистой структуры неорганических клатратов являются атомы 14 группы периодической таблицы, такие как Si, Ge и Sn. Чаще всего ячейки имеют форму правильного многогранника. Наименьшим и наиболее часто встречающимся многогранником в клатратах является правильный додекаэдр, составленный из 12-ти пятиугольных граней 5^{12} . Последующее увеличение размера многогранника обеспечивается добавлением 2 ($5^{12}6^2$), 3 ($5^{12}6^3$), 4 ($5^{12}6^4$) или 8 ($5^{12}6^8$) шестиугольных граней.

Кристаллическая структура клатратов І-го типа состоит из двух типов многогранников: малых пятиугольных додекаэдров 5^{12} и больших 14-гранных тетрадекаэдров $5^{12}6^2$. Всего в элементарной ячейке находятся 46 атомов каркаса и 8 атомов-гостей.

Структура клатратов VII-го типа образована усечёнными окта
эдрами $4^{6}6^{8}$ из атомов фосфора и переходных металлов. К данному типу относят соединения $BaNi_2P_4$ и $BaPd_2P_4$.

Так называемый «скрученный» клатрат представлен тремя соединениями $SrNi_2P_4$, $BaCu_2P_4$ и $EuNi_2P_4$ и они не имеет аналогов среди газовых гидратов. Кристаллическую структуру «скрученного» клатрата можно описать как объёмную мозаику из уникальных 24-вершинных многогранников, которые состоят из 4 квадратов, 4 пятиугольников и 6 шестиугольников.

Все изучаемые клатраты I-го типа имеют полупроводниковый тип проводимости. Об этом свидетельствуют результаты более ранней работы, где было показано, что полное электрическое сопротивление (импеданс) серии клатратов $Sn_{24}P_{19,3}Br_xI_{8-x}$, где x = 0, 2, 5, 7, 8 уменьшается с ростом температуры.

Клатраты VII-го типа $SrNi_2P_4$, $BaNi_2P_4$ и $BaCu_2P_4$ показывают характерный для металлов рост удельного сопротивления с ростом температуры. Удельное сопротивление $BaCu_2P_4$ несколько больше, чем у никельсодержащих соединений. Также у $BaCu_2P_4$ больше коэффициент Зеебека, который при комнатной температуре достигает максимального значения 30 мкВ K^{-1} . Кроме того, коэффициент Зеебека у соединения $BaCu_2P_4$ является отрицательным в температурной области 2 – 88 К.

Во второй главе описаны теоретические модели аппроксимации температурных зависимостей теплоёмкости, используемая аппаратура, особенности методики проведения эксперимента и технологии синтеза объектов исследования.

Для аппроксимации температурных зависимостей теплоёмкости, с учётом структурных особенностей клатратов и клатратоподобных соединений, использовалась модель Дебая-Эйнштейна. Теория Эйнштейна, по нашему мнению, подходит для описания колебаний массивных атомов гостей, которые находятся в матрице-хозяине. Теплоёмкость в этом случае определялась по следующему уравнению:

$$C_V = 3R \left(\frac{\theta_E}{T}\right)^2 \frac{e^{\theta_E/T}}{\left(e^{\theta_E/T} - 1\right)^2},\tag{1}$$

где R — газовая постоянная, $\theta_E = \frac{h\nu_0}{k_B}$ — характеристическая температура Эйнштейна, которая определяет максимальную частоту колебаний ν_0 , k_B — постоянная Больцмана.

Высокочастотные колебания атомов матрицы-хозяина удовлетворительно описываются в приближении Дебая. Уравнение теплоёмкости Дебая при низких температурах имеет вид:

$$C_V = \frac{12\pi^4 N k_B}{5\theta_D^3} T^3,\tag{2}$$

где *N* — количество атомов, а θ_D — температура Дебая.

Принимая во внимание то, что все изучаемые клатраты I-го типа являются полупроводниками, электронный вклад в теплоёмкость является пренебрежимо мал. Однако, в этом типе клатратов из-за нарушения сферической симметрии окружения гостевых атомов появляется стеклоподобный вклад, который, как и электронный, имеет линейную зависимость от температуры.

Дефекты и наличие вакансий в соединениях приводят к возможности для гостевых атомов занимать внутри несферических ячеек каркаса несколько энергетически неэквивалентных позиций. Эти процессы ведут к появлению двухуровневых систем (ДУС) и соответствующего вклада, аналогичного вкладу Шоттки в теплоёмкости, который описывается уравнением:

$$C_{\text{ДУС}} = R \frac{\left(\frac{\delta}{T}\right)^2 \frac{E_0}{E_1} e^{\frac{\delta}{T}}}{\left(\frac{E_0}{E_1} e^{\frac{\delta}{T}} + 1\right)^2},$$
(3)

где $\delta = \frac{D}{k}$, а D — разность энергий между основным (E_0) и возбуждённым (E_1) состояниями.

Установлено, что колебания атомов-гостей и матрицы-хозяина не являются независимыми. Таким образом, анализ термодинамических данных с использованием модели Эйнштейна может вызвать вопросы. Однако сравнение результатов анализа термодинамических свойств некоторых клатратов в приближении Дебая-Эйнштейна с данными рамановского рассеяния свидетельствует об очень близких значениях рамановских частот с частотами эйнштейновских колебаний, приписываемых атомам-гостям.

Измерение теплоёмкости всех образцов изучаемых клатратов и клатратоподобных соединений осуществлялось на калориметре фирмы ООО «Термакс», реализующей классический адиабатический метод определения теплоёмкости. Особенности данной установки:

- температурный диапазон измерения 1,8 350 К;
- температурная стабильность: 0,2 мК вблизи 0,6 К, 2 мК вблизи 350 К;
- предел допускаемого значения относительной погрешности измерения в температурных диапазонах:
 - 1,8 12 K: 3%;
 - 12-40 K: 2%;
 - 40 350 K: 0,5%;
- средняя скорость испарения гелия 2,5 л/день;
- объем образца: менее 1 куб. см.

Все образцы клатратов и клатратоподобных соединений получены на химическом факультете МГУ им. Ломоносова стандартным ампульным методом. Все операции проводились в закрытой камере в аргоновой среде.

Клатраты I-го типа были приготовлены из мелкоизмельчённого олова, очищенного красного фосфора, синтезированного дибромида олова для $Sn_{24}P_{19,4}Br_8$ и йодида олова для клатратов $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$. Для получения соединения $Sn_{18}In_6As_{21,5}I_8$ были использованы прекурсоры SnAs и InAs, необходимые для ускорения достижения равновесного состояния.

Для приготовления образцов клатратов VII-го типа использовались: куски стронция, бария, европия, порошкообразного никеля и очищенного красного фосфора (99,5%). Для каждого из трёх клатратов исходная смесь элементов, взятых в стехиометрическом соотношении, была спрессована в таблетку, которая запечатывалась в кварцевую трубку и затем отожжена в печи.

Клатратоподобное соединение $Eu_7Cu_{44}As_{23}$ было приготовлено из слитка Eu, порошкообразных Cu и As с чистотой выше 99%. Для получения монокристалла образец был расплавлен с помощью дуговой плавки в очищенном аргоне и дополнительно отожжён при $800^{\circ}C$ в течение двух недель.

Химический и рентгеноструктурный анализ синтезированных образцов не выявили наличия посторонних фаз, признаков разложения и градиента состава вдоль поверхности образцов.

Третья глава посвящена экспериментальному исследованию температурных зависимостей теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$,

 $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$, $Sn_{18}In_6As_{21,5}I_8$, $SrNi_2P_4$, $BaNi_2P_4$, $EuNi_2P_4$ и клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в интервале температур 2 – 300 К. Так же в этой главе представлен расчёт термодинамических функций.

На Рисунке 1 представлены температурные зависимости теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$ и $Sn_{18}In_6As_{21,5}I_8$, полученные в настоящем исследовании. На зависимостях отсутствуют какие-либо аномалии, свидетельствующие о фазовых превращениях в каждом из 5-ти клатратов.

По нашему мнению, при анализе темзависимостей пературных теплоёмкости наилучшее множество параметров аппроксимации (a_i, θ_k) должно быть таким, которое надёжно описывает, по крайней мере, два экспериментально измеренных свойства. возникающих вследствие колебания кристаллической решётки. Поэтому температурные теплоёмкости зависимости соотносились с зависимостями теплового расширения клатратов.

Использование первоначального набора параметров аппроксимации удовлетворительно описывает температурную зависимость теплоёмкости $C_P(T)$ клатрата $Sn_{24}P_{19,4}Br_8$, однако на температурной зависимости объёма элементарной ячейки наблюдается pacхождение при температурах ниже 120 К. Следовательно, существует другой набор компонент и в том числе тот, который ответственен за выявленную низкотемпературную аномалию теплового расширения клатрата. С учётом особенностей кристаллической структуры клатратов І-го типа, мы предположили, что выявленная аномалия может

Рисунок 1. Температурмолярной ные зависимости теплоёмкости C_P клатратов $Sn_{24}P_{19,4}Br_8$ (a), $Sn_{24}P_{19,2}I_8$ (6), $Sn_{20}Zn_4P_{20,8}I_8$ (B), $Sn_{17}Zn_7P_{22}I_8$ (T) и *Sn*₁₈*In*₆*As*_{21,5}*I*₈ (д) в области 2 – 300 К

быть связана с вкладом, подобным шотткиевскому, и обусловлена дефектами в матрице-хозяине. Под дефектами подразумеваются вакансии, а также различие координационных чисел атомов олова, которые вызывают нарушение сферической симметрии окружения гостевых атомов. В результате гостевой атом может занимать одно из двух (или более) пространственно близких, но несколько отличающихся по энергии положений. Переходы между этими состояниями приводят к появлению дефектной моды в фононном спектре клатрата. На температурной зависимости теплоёмкости этот вклад представляет собой типичную функцию Шоттки (см. ур-ние 3) с максимумом при температуре $T_{max} \approx 0.4\delta$, где δ — разность энергетических состояний, между которыми происходят переходы.

Принимая во внимание вклад дефектной моды, уравнение для теплоёмкости клатратов I-го типа будет иметь следующий вид:

$$C_V = a_1 T + a_2 C_D(\theta_D/T) + a_3 C_E(\theta_{E_1}/T) + a_4 C_E(\theta_{E_2}/T) + C_{\text{med}.}(T).$$
(4)

Здесь коэффициенты a_i представляют собой долю і-го вклада в общую теплоёмкость, а C_D и C_E — функции теплоёмкости Дебая и Эйнштейна соответственно. a_1 характеризует вклад «мягких» потенциалов, а два вклада Эйнштейна характеризуют тот факт, что структура клатрата І-го типа состоит из двух видов полиэдров. Значения a_i , θ_D и θ_{E_j} оценивались исходя из наилучшего соответствия экспериментальным данным (Таблица 1). Очевидно, что уравнение 4,

Таблица 1.

Параметры аппроксимации для температурной зависимости теплоёмкости $C_V(T)$ клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$

11 511 1811 101 15 21, 51 8								
Клатрат	a _{SPM}	θ_D	a_D	θ_{E_1}	a_1	θ_{E_2}	a_2	δ, K
$Sn_{24}P_{19,4}Br_8$	0,0201	390	0,56	81	0,093	90	0,29	45
$Sn_{24}P_{19,2}I_8$	3×10^{-4}	395	0,455	60	0,115	104	0,33	30
$Sn_{20}Zn_4P_{20,8}I_8$	4×10^{-4}	400	0,62	65	0,071	100	0,24	36
$Sn_{17}Zn_7P_{22}I_8$	4×10^{-4}	430	0,6	81	0,075	95	0,25	34
$Sn_{18}In_6As_{21,5}I_8$	0,0642	380	0,5	55	0,11	87	0,3	19

содержащее дефектную моду, позволяет лучше описать экспериментальные значения теплоёмкости клатратов $Sn_{24}P_{19,4}Br_8$, $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$, $Sn_{17}Zn_7P_{22}I_8$. Более того, отношение коэффициентов a_4/a_3 , характеризующих доли вкладов Эйнштейна, равно 2,9, что очень близко к отношению количества 20-вершинных и 24-вершинных многогранников в клатрате I-го типа.

На Рисунке 2 представлены особенности аппроксимации температурных зависимостей теплоёмкости на примере клатрата $Sn_{24}P_{19,4}Br_8$.

Для выяснения влияния состава матрицы-хозяина на термодинамические свойства клатратов І-го типа были исследованы и сопоставлены 4 соединения: $Sn_{24}P_{19,2}I_8$, $Sn_{20}Zn_4P_{20,8}I_8$ и $Sn_{17}Zn_7P_{22}I_8$, где часть атомов олова замещена атомами цинка и $Sn_{18}In_6As_{21,5}I_8$, где вместо цинка содержится индий, а вместо фосфора — мышьяк, что делает его каркас существенно тяжелее, так как индий почти вдвое тяжелее цинка, а мышьяк в 2,5 раза тяжелее фосфора.

На Рисунке 3 видно, что характеристическая температура θ_{E_1} , отражающая квазилокализованные колебания гостевых атомов в меньших, почти сфери-

Рисунок 2. Температурные зависимости теплоёмкости клатрата $Sn_{24}P_{19,4}Br_8$ и результат аппроксимации в приближении Дебая-Эйнштейна: C_V/T^3 от T^2 (a); C_V от T (б). 1 — экспериментальные данные, 2 — C_{SPM} , 3 — C_D , 4 — C_{E_1} , 5 — C_{E_2} , 6 — $C_{\text{деф.}}$, 7 — $\sum C_i$

ческих, ячейках, заметно возрастает.

В то же время θ_{E_2} , относящаяся к псевдолокализованным колебаниям гостей, находящихся в более крупных и менее симметричных ячейках, напротив, уменьшилась с увеличением количества атомов цинка (N). Эта тенденция объясняется тем, что уменьшение количества вакансий с увеличением N делает ячейку более жёсткой и в то же время поддерживает постоянство эффективного радиуса путём перераспределения атомов в окружающих положениях каркаса. В итоге это приводит к снижению частоты гостевых колебаний с увеличением количества атомов Zn.

Индий и мышьяк, как более тяжёлые, крупные атомы приводят к снижению температуры Дебая θ_D для $Sn_{18}In_6As_{21,5}I_8$ в сравнении с клатратами системы Sn - Zn -

Рисунок 3. Сравнение термодинамических свойств клатратов $Sn_{24}P_{19,2}I_8$ (0), $Sn_{20}Zn_4P_{20,8}I_8$ (4), $Sn_{17}Zn_7P_{22}I_8$ (7) и $Sn_{18}In_6As_{21,5}I_8$ (6), N — количество атомов цинка (индия)

P - I. При этом объем ячеек, которые занимают атомы-гости, увеличивается, приводя к более низким значениям температуры Эйнштейна θ_{E_1} и θ_{E_2} для $Sn_{18}In_6As_{21,5}I_8$. Вклад дебаевской компоненты (a_D) уменьшается, тогда как вклад двух компонентов Эйнштейна $(a_{E_1} u a_{E_2})$ увеличивается.

Важно отметить, что для всех четырёх соединений отношение a_2/a_1 не зависит от состава подрешётки клатратов, а его значение довольно близко к 3, что подтверждает достоверность нашего анализа.

Измеренные температурные зависимости молярной теплоёмкости клатратов VII-го типа показаны на Рисунке 4. Из графиков можно заметить, что функции $C_P(T)$ превосходят ожидаемые значения Дюлонга-Пти уже при комнатной температуре. Также при низких температурах заметны низкоамплитудные холмы (диффузные максимумы): 3,9 К для $BaNi_2P_4$ и 4,5 К для $SrNi_2P_4$ (Рисунок 4 а,6, вставки). Амплитуда этого максимума в теплоёмкости $EuNi_2P_4$ заметно больше, чем у остальных, поэтому мы считаем, что он имеет другое происхождение. Также на зависимости теплоёмкости $C_P(T)$ для $EuNi_2P_4$ наблюдается фазовый переход при температурах ниже 20 К (Рисунок 4 в), который можно объяснить магнитным упорядочением катионов Eu^{2+} .

Рисунок 4. Молярные теплоёмкости $C_P(T)$ клатратов $SrNi_2P_4$ (а), $BaNi_2P_4$ (б) и $EuNi_2P_4$ (в) в области 2 – 300 К

По нашим оценкам, вклад свободных носителей заряда в общую теплоёмкость клатратов VII-го типа пренебрежимо мал в сравнении с другими вкладами, ответственными за выявленные аномалии. Также они не могут происходить изза каких-либо процессов упорядочения магнитных моментов парамагнитных катионов Ni^{2+} . Это подтверждается температурными изменениями энтропии. Следовательно, аномалии теплоёмкости имеют не магнитную природу, а должны быть связаны с процессами, происходящими в фононной подсистеме.

Выше было отмечено, что на теплоёмкость клатратов І-го типа при низких температурах существенно влияют два процесса: 1) отклонение от идеальной упорядоченности атомов в кристаллической структуре, которое даёт линейный стеклоподобный вклад; 2) способность гостевых атомов занимать неэквивалентные позиции внутри менее симметричных ячеек основного каркаса, что влечёт возникновение ДУС в гостевой подструктуре. Первый из этих процессов не проявляется в клатратах VII-го типа, тогда как последний доминирует. Следовательно, температурные зависимости теплоёмкости можно рассматривать в рамках теории Дебая-Эйнштейна, дополнительно учитывая ДУС вклад:

$$C_V = C_{\text{ДУС}}(T) + a_D C_D(\theta_D/T) + a_3 C_E(\theta_{E_1}/T) + a_4 C_E(\theta_{E_2}/T).$$
(5)

Параметры аппроксимации температурных зависимостей теплоёмкости $C_P(T)$ клатратов $SrNi_2P_4$, $BaNi_2P_4$ и $EuNi_2P_4$ приведены в Таблице 2.

Следует отметить, что в отличие от клатратов I-го типа, которые имеют два вида многогранников, клатраты VII-го типа имеют только один вид многогранника, содержащего гостевые атомы. Тем не менее, для правильного соответствия экспериментальным зависимостям $C_P(T)$ клатратов $SrNi_2P_4$, $BaNi_2P_4$

Таблица 2.

Характеристические температуры Дебая (θ_D) и Эйнштейна ($\theta_{E_1}, \theta_{E_2}$), коэффициенты a_i , разность между основным и возбуждённым состоянием bи энергия расщепления основного состояния δ клатратов $SrNi_2P_4$, $BaNi_2P_4$

Клатрат	a_D	θ_D, K	a_{E_1}	θ_{E_1}, \mathbf{K}	a_{E_2}	θ_{E_2}, \mathbf{K}	δ	b		
$SrNi_2P_4$	0,76	500	0,031	71	0,145	148	8,5	0,095		
$BaNi_2P_4$	0,76	500	0,052	72	0,17	139	8	0,012		
$EuNi_2P_4$	0,74	505	0,031	66	0,22	140	17	2		

и $EuNi_2P_4$ мы используем два вклада Эйнштейна. Мы считаем, что две функции Эйнштейна с разными характеристическими температурами, $C_E(\theta_{E_1}/T)$ и $C_E(\theta_{E_2}/T)$, необходимы для учёта анизотропии колебаний гостевых атомов.

В ходе анализа аномальной составляющей теплоёмкости $\Delta C(T)$ и энтропии $\Delta S(T)$ клатрата $EuNi_2P_4$ удалось выявить суммарный эффект трёх процессов. Во-первых, это переход из парамагнитного состояния в антиферромагнитное при T_1 . Во-вторых, фазовый переход первого рода, предположительно

структурный, который происходит при дальнейшем уменьшении температуры ниже T_3 . Наконец, существующая аномалия между T_1 и T_3 , особенности которой требуют дополнительного исследования.

Избыточный вклад в теплоёмкость $EuNi_2P_4$ при температурах ниже T_1 мы выразили как сумму трёх слагаемых: первый вклад $C_1(T) = a_1T^2$, который определяет уменьшение теплоёмкости после пика низкотемпературного фазового перехода первого рода, второй вклад $C_2(T) = a_2T^3$ описывает теплоёмкость антиферромагнитного состояния, третий вклад, который мы обозначили как $C_{\text{маг.}}(T)$.

Холм теплоёмкости, отражаю-

Рисунок 5. Низкотемпературная теплоёмкость клатрата $EuNi_2P_4$. Крестики — экспериментальные данные; $1 - C_1(T); 2 - C_2(T); 3 - C_{exc}(T);$ $4 - \sum C_i; 5$ — теплоёмкость в модели среднего поля $C_{MFT}(T)$

щий упорядоченное состояние системы, имеющей (2S + 1)-кратное вырождение, может быть аппроксимирован в приближении теории среднего поля (MFT). Результаты аппроксимации низкотемпературного максимума теплоёмкости представлены на Рисунке 5.

В структуре $Eu_7Cu_{44}As_{23}$ существуют два типа гостевых атомов: атомы Eu в асимметричных 20-вершинных ячейках и атомы As в 12-вершинных кубооктаэдрах, для которых характерны свои собственные частоты колебаний. Однако атомы As, имеющие достаточно сильную связь с атомами меди основного каркаса (2,67 Å), относительно лёгкие, что позволяет сделать предположение об их крайне низком вкладе в термодинамические свойства $Eu_7Cu_{44}As_{23}$ в низкотемпературной части изучаемого температурного интервала.

На Рисунке 6 приведён график экспериментальной зависимости молярной теплоёмкости клатрата $Eu_7Cu_{44}As_{23}$. На вставке к графику показан резкий максимум при $T_C = 17$ К, который указывает на наличие фазового перехода за счёт упорядочения магнитных моментов катионов Eu^{2+} . Основное состояние ${}^8S_{7/2}$ катиона $Eu^{2+}(f^7)$ имеет нулевой орбитальный момент, поэтому вклад Шоттки не наблюдается для этого соединения.

Рисунок 6. Молярная теплоёмкость $C_P(T)$ клатратоподобного соединения $Eu_7Cu_{44}As_{23}$ в области 2 – 300 К (1), 2 — литературные данные

При температурах ниже 6 К теплоёмкость интерполировалась магнонным вкладом:

$$C_P(T) = 1,362 \cdot T^{3/2} + 0,3226 \cdot T^{5/2}.$$
 (6)

Значения электронной теплоёмкости при 2-5 К имеют тот же порядок, что и погрешность измерения, поэтому нами при расчёте не используется. Мы пренебрегали также решёточным вкладом CT^3 , который, как ожидается, будет намного меньше, чем магнитный при температурах ниже 6 К.

Чтобы выделить фононный и магнонный вклады в общей теплоёмкости *Eu₇Cu₄₄As₂₃*, мы проанализировали *C_P(T)*-

функцию структурно изоморфного аналога, не имеющего магнитных ионов. Используя данные $C_P(T)$ для $Sr_7Cu_{44}As_{23}$, мы извлекли электронный вклад в теплоёмкость $C_{3л.}(T) = \gamma T$, где γ — коэффициент Зоммерфельда для $Sr_7Cu_{44}As_{23}$. Оставшаяся часть, представляющая собой фононный вклад $C_{\text{реш.}}(T)$, использовалась для построения температурной зависимости характеристической температуры $\theta_D(T)$. При $T > T_C$ функции $C_P(T)$ для $Eu_7Cu_{44}As_{23}$ и $Sr_7Cu_{44}As_{23}$ сопоставимы, что позволяет предположить, что фононный вклад в теплоёмкость для этих двух соединений аналогичен во всем температурном диапазоне.

По аналогии с другими клатратами мы проанализировали зависимость (C_V/T^3) от (T^2) для соединения $Eu_7Cu_{44}As_{23}$ с точки зрения отношений хозяингость. Для аппроксимации экспериментальных значений теплоёмкости использовалось следующее уравнение:

$$C_V(T) = \gamma T + C_{\text{ДУС}_1}(T) + C_{\text{ДУС}_2}(T) + a_D C_D(\theta_D/T) + a_E C_E(\theta_E/T).$$
(7)

Первый «шотткиподобный» вклад, имеющий более высокие частоты, описывает колебания ДУС, возникающих в гостевой подструктуре вследствие отсутствия

симметрии окружения гостевого атома. Второй вклад, возникающий при самых низких температурах, отражает незначительное смещение атомов меди и мышьяка со своих позиций. Параметры аппроксимации температурной зависимости теплоёмкости *Eu*₇*Cu*₄₄*As*₂₃ представлены в Таблице 3.

Таблица 3.

		• ()	1			1 11	20	
θ_D, K	a _D	θ_E, K	a_E	γ , Дж·моль ⁻¹ · K^{-2}	δ_1, K	b_1	δ_2, K	b_2
290	0.81	96	0.18	0.133	5	0.03	50	2.5

Параметры аппроксимации для температурной зависимости теплоёмкости $C_V(T)$ клатратоподобного соединения $Eu_7Cu_{44}As_{23}$

Стоит отметить, что сумма коэффициентов a_i , характеризующих долю i-го вклада в общей теплоёмкости, близка к единице. Удовлетворительное воспроизведение экспериментальной температурной зависимости объёма элементарной ячейки $Eu_7Cu_{44}As_{23}$ в модели Дебая-Эйнштейна с использованием параметров из Таблицы 3 свидетельствует об адекватности проведённого анализа.

Основные результаты работы

- Температурные зависимости теплоёмкости клатратов І-го типа удовлетворительно описываются в рамках модели Дебая-Эйнштейна с использованием двух вкладов Эйнштейна, отражающих наличие двух типов гостевых атомов, которые располагаются в додекаэдрах и тетрадекаэдрах соответственно.
- Введение стеклоподобного вклада при анализе теплоёмкости клатратов І-го типа обусловлено нарушениями пространственного распределения атомов хозяина, а также наличием вакансий. Вклад двухуровневых систем обусловлен нарушением сферической симметрии окружения гостевого атома.
- Особенностью клатратов VII-го типа является наличие анизотропии колебаний решётки вдоль разных кристаллографических направлений.
 Это обусловливает введение двух компонент Эйнштейна в фононном спектре и наличие вклада двухуровневых систем.
- 4. Для соединений, в структуре которых присутствует парамагнитный ион Eu^{2+} , характерен диффузный максимум на температурной зависимости теплоёмкости, который отражает переход из парамагнитного в магнитоупорядоченное состояние. Также в соединениях $EuNi_2P_4$ и $Eu_7Cu_{44}As_{23}$ отсутствует вклад Шоттки, так как основное состояние катиона $Eu^{2+}(f^7)$ имеет нулевой орбитальный момент.
- 5. Величины характеристических дебаевских и эйнштейновских температур, которые были получены в результате анализа фононной теплоёмкости изучаемых клатратов, отнесены к колебаниям атомов матрицы-хозяина и атомов-гостей соответственно.

6. На низкотемпературной зависимости теплоёмкости клатрата EuNi₂P₄ выявлены две отчётливые аномалии. Первая характеризует переход из парамагнитного состояния в антиферромагнитное при 11 К. Вторая — фазовый переход первого рода, предположительно структурный, при температурах ниже 3 К.

Основные результаты диссертации отражены в следующих работах:

- Structural irregularities and peculiarities of low-temperature thermal properties of Sn₂₄P_{19.4}Br₈ clathrate / K. S. Pilipenko [et al.] // Dalton Transactions. 2017. Vol. 46, № 28. Р. 9110—9117. (0,91 п.л./0,23 п.л.)
- 2. Dynamics of the crystal structure of tin-based type-I clathrates with different degrees of disorder in their cationic frameworks / K. S. Pilipenko [et al.] // Physical Chemistry Chemical Physics. 2017. Vol. 19, № 40. Р. 27725—27730. (0,65 п.л./0,16 п.л.)
- 3. Effect of the cation sublattice composition of tin-based type-I clathrates on their low-temperature thermal properties / K. S. Pilipenko [et al.] // Dalton Transactions. 2018. Vol. 47, № 32. Р. 11219—11225. (0,64 п.л./0,16 п.л.)
- Structure-Related Thermal Properties of Type-VII Clathrates SrNi₂P₄ and BaNi₂P₄ at Low Temperature / K. Pilipenko [et al.] // Physica Status Solidi (B) Basic Research. 2018. Vol. 255, № 8. Р. 1800067. (0,91 п.л./0,22 п.л.)
- Low-temperature thermodynamic and magnetic properties of clathrate-like arsenide Eu₇Cu₄₄As₂₃ / K. S. Pilipenko [et al.] // Journal of Magnetism and Magnetic Materials. 2020. Vol. 498. P. 166165. (1,05 п.л./0,26 п.л.)
- The specific features of phononic and magnetic subsystems of type-VII clathrate EuNi₂P₄ / K. S. Pilipenko [et al.] // Physical Chemistry Chemical Physics. 2020. Vol. 22, № 32. P. 18025—18034. (1,13 п.л./0,28 п.л.)
- Pilipenko K. Low-temperature thermal properties of type-1 thermoelectric clathrates // Theses of 3rd International Conference on Applied Physics. London, UK, 2018. P. 50. (0,04 п.л./0,04 п.л.)
- Особенности низкотемпературной теплоемкости клатратоподобных соединений / К. Пилипенко [и др.] // Актуальные проблемы физики твердого тела. Минск, 2018. С. 152—154. (Сборник докладов VIII Международной научной конференции, т. 2). (0,04 п.л./0,02 п.л.)
- Низкотемпературные свойства теромэлектрического клатрата EuNi₂P₄ / К. Пилипенко [и др.] // Термоэлектрики и их применение 2021 (ISCTA2021). СПб., 2021. С. 53. (Тезисы докладов XVII межгосударственной конференции). (0,04 п.л./0,03 п.л.)

10. Анализ температурных зависимостей теплоёмкости клатратов седьмого типа на основе фосфора и никеля в температурной области 2 – 300 К / К. Пилипенко [и др.] // «Ломоносов — 2022». Москва, 2022. С. 585. (Тезисы докладов XXIX международной конференции студентов, аспирантов и молодых ученых по фундаментальным наукам. Секция «Физика»). (0,06 п.л./0,04 п.л.)

Пилипенко Кирилл Сергеевич

Термодинамические свойства клатратов и клатратоподобных соединений в температурной области 2 – 300 К

> Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Подписано в печать 19.04.2023. Заказ № 21/4 Формат 60×90/16. Бумага офсетная. Печать офсетная.Усл. печ. л. 1,05. Тираж 100 экз. Типография ООО "Полиграм-Плюс" 241037, г. Брянск, ул. Крахмалёва, 29